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Abstract. With the deepening of global cultural exchange, Zen culture, as one of 

the traditional Chinese cultures, has gradually gained admiration from modern 

society. Zazen, the core practice of Zen, is central to this culture, but the emo-

tional changes of a practitioner during Zazen are difficult to perceive and visual-

ize. By constructing Zen-inspired scenes, the inner world of the practitioner can 

be depicted. Chinese cultural heritage, including Buddhist sculptures, poetry, and 

landscape paintings, provides rich materials for presenting these Zen scenes. This 

paper proposes a method for analyzing emotional changes based on EEG assess-

ment, and maps it to elements of traditional Chinese cultural heritage, using vir-

tual scenes to showcase the emotional fluctuations of the Zazen practitioner. Spe-

cifically, this paper introduces the Scene-EEGCNN algorithm, which reads the 

EEG signals of the practitioner in real-time to assess their emotional state and 

inner fluctuations. Since the emotional changes of a Zazen practitioner are often 

difficult for the outside world to detect, this algorithm maps the emotional data 

to specific elements of Zen culture, constructing a Zen-inspired virtual scene to 

intuitively represent the practitioner's inner world. With this technology, practi-

tioners can not only gain a deeper understanding of their emotional changes but 

also share and communicate their Zen meditation experiences with others in a 

visual way, thus promoting global cultural exchange and understanding. 

Keywords: Zen Cultural, Cultural Heritage, EEG, Scene Generation. 

1 Introduction 

Originating in ancient India, Zen was later transmitted to China, from where it spread 

to Japan, Korea, and eventually to Western countries such as the United States and 

various parts of Europe [1]. One of the distinguishing features of Zen Buddhism is its 

exceptional adaptability; unlike many other religious traditions, it is capable of inte-

grating and absorbing the dominant ideologies of the cultures it encounters. In China, 

Zen culture assimilated core philosophical elements from Confucianism and Daoism, 
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evolving into a uniquely Eastern artistic and spiritual tradition. Sitting meditation (Za-

zen), a central practice in Zen, has gained considerable popularity in modern society as 

a method of introspection and self-regulation [2]. Contemporary research has demon-

strated the positive effects of Zen meditation across a variety of psychological and be-

havioral domains. For instance, it has been shown to help individuals with addiction or 

binge-eating disorders regulate cravings[3], improve cognitive and emotional function-

ing in individuals with attention-deficit/hyperactivity disorder (ADHD) [4], and assist 

patients with recurrent depressive disorders in managing maladaptive thought patterns 

and emotional distress [5]. 

Zen practice, in essence, is a quality of consciousness and is surely a universal and 

inherent ability of human beings. The visualization of a meditator’s inner world has the 

potential to generate profound impacts across multiple dimensions. On a cultural level, 

employing EEG to represent the experiential states of Zen practice can transcend lin-

guistic boundaries and foster emotional resonance between civilizations [6]. At the in-

dividual level, visualization technologies that track emotional trajectories can offer 

real-time feedback to optimize meditative practice, while also providing the general 

public with intuitive access to experiences of inner calm, thereby enhancing psycho-

logical resilience [7]. From a societal perspective, such tools could transform ap-

proaches to mental health intervention by alleviating collective anxiety and creating 

spaces for emotional healing through public art initiatives, ultimately strengthening the 

fabric of social emotional connectedness. 

Within Chinese cultural heritage, numerous scenes and artistic forms—refined 

through nature, humanistic expression, and aesthetic abstraction—profoundly convey 

the spirit of Zen and reflect the clarity and fluctuations of the meditator’s inner state 

[8]. For example, the winding paths of classical Chinese gardens or the chaotic compo-

sition of rocks and trees in traditional landscape paintings may symbolize the mental 

disarray experienced during meditation. In contrast, the rhythmic motion of a bamboo 

whisk stirring tea or the repetitive syllables of the Guqin piece Pu'an Incantation can 

embody a state of focused attention. Meanwhile, the deliberate blank spaces in ink 

scrolls, the lingering resonance of abruptly ending poetry, or the ephemeral lotus in the 

palm of a Buddha statue may evoke the meditator’s experience of emptiness and inner 

stillness. 

In this study, we adopt a meditative framework and propose the Scene-EEGCNN 

algorithm to concretely represent emotional changes during Zen meditation. By map-

ping EEG-based emotional states to culturally grounded Zen-inspired visual scenes, we 

construct dynamic environments that externalize the inner experiences of meditators. 

Coupled with an integrated evaluation mechanism, this approach enables the real-time 

detection and interpretation of emotional shifts. In summary, the contributions of this 

work are as follows: 

 We propose the Scene-EEGCNN algorithm in the form of combining scenes with 

electroencephalogram (EEG), which makes the inner changes of meditators con-

crete.  

 We constructed a material library of Chinese cultural heritage with Zen connota-

tions, and used EEG to capture the changes in the attention of meditators.  
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 We classify the emotional changes of the Zazen practitioner captured by EEG using 

the Scene-EEGCNN algorithm, and map the classification results to a Zen-inspired 

Chinese cultural heritage database. 

2 Related word 

While often regarded as a tool for relaxation, Zen meditation is more appropriately un-

derstood as a method for cultivating specific emotional states, which can then be used 

to facilitate self-regulation across multiple functional domains—including physical, 

emotional, and behavioral processes, as well as interpersonal and intrapersonal rela-

tionships. Most therapeutic applications and conceptualizations of Zen meditation em-

phasize the development of attentional focus and awareness of present-moment expe-

riences, accompanied by a non-judgmental attitude toward these experiences [9]. The 

primary objective of Zen practice is not merely relaxation, but rather the cultivation of 

emotional states that foster an accepting mindset. This mindset serves to interrupt ha-

bitual patterns of perception and reaction, ultimately promoting clarity of awareness 

and inner calm. 

During the practice of sitting meditation, Zen practitioners typically experience mul-

tilayered and dynamic fluctuations in their inner emotional states. Within the rich con-

text of Chinese cultural heritage, numerous scenes and artistic forms—shaped through 

nature, humanistic philosophy, and aesthetic refinement—effectively convey Zen con-

sciousness and mirror the internal clarity and transformation of the meditator’s mind 

[8]. 

In the initial stage of meditation, practitioners often struggle with scattered thoughts 

and emotional instability. This state of mental turbulence can be metaphorically re-

flected through traditional Chinese garden design techniques such as "winding paths 

leading to secluded spots" and "borrowed scenery obscured by barriers," which sym-

bolize the confusion and gradual unveiling of the inner self [10]. At this stage, the med-

itator is akin to a first-time visitor in a garden—unfamiliar with the path, emotionally 

reactive to external stimuli, and unable to anchor attention. 

As the meditation deepens into the second stage, practitioners begin to gain control 

over their emotional states, with increasing attentional stability and a growing sense of 

physical and mental harmony. Architectural elements such as pavilions and waterside 

gazebos within classical gardens are often used as contemplative spaces for self-reflec-

tion, representing the psychological transition from external distraction to inward ob-

servation [11]. 

At the most advanced stage, known as the “manifestation of emptiness,” the practi-

tioner attains a state of non-attachment and emotional purification, entering a form of 

awareness that transcends the subject-object dichotomy. Iconic Buddhist statues in Chi-

nese grottoes—such as the meditative Buddha figures in the Mogao Caves of Dunhuang 

or the serene visage of the Vairocana Buddha at Longmen Grottoes [12]—with their 

half-closed eyes and tranquil expressions, offer powerful visual metaphors for this ul-

timate meditative state, representing the unity of consciousness and the transcendence 

of emotional fluctuation. 
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At present, it is possible to capture attention changes through EEG signals and clas-

sify them, resulting in widely-used datasets, such as the DEAP dataset, SEED dataset, 

MAHNOB-HCI dataset, Dreamer database, SEED-IV dataset[13], etc. In the SEED 

dataset, for each emotion, five movie clips with a length of approximately four minutes 

are selected, which can evoke the desired target emotions. The weight distribution of a 

trained Deep Belief Network (DBN) is used to select meaningful key channels and fre-

quency bands, and different electrode-set profiles are designed. The experimental re-

sults show that the electrode-set pool can achieve relatively stable performance in all 

experiments across different subjects. Through EEG signals, the user's state is classified 

into three categories: positive, neutral, and negative. The accuracy of this classification 

effect is as high as over 80%.  

In EEG assessments, the three emotional states—positive, neutral, and negative—

correspond to distinct patterns of neural activity: left-right frontal asymmetry, balanced 

cortical activation, and heightened right-hemispheric cortical activation, respectively 

[14]. These neural patterns exhibit a profound resonance with the three meditative states 

observed in contemplative practices: distraction, concentration, and emptiness. Specif-

ically, the distracted state is often associated with elevated beta waves and increased 

right frontal activity, reflecting anxiety and emotional instability. The concentrated 

state is typically linked to enhanced frontal midline theta activity, indicating improved 

emotional regulation and cognitive control [15]. In the state of emptiness, studies have 

found increased cross-regional synchronization of low-frequency alpha and theta waves, 

particularly accompanied by decreased activity in the default mode network (DMN), 

which signifies a diminished sense of self and emotional transcendence [16]. This in-

dicates that the transformation of a Zazen practitioner’s inner state can not only be 

identified through EEG signals but also aligns closely with the neural mechanisms of 

emotional regulation, providing a theoretical foundation for mapping subjective Zen 

meditation experiences to objective physiological indicators. 

However, there has not been a method that can visually represent emotional changes 

in a tangible way, and Zen meditation itself is a form of emotion that is difficult to 

understand and inherently abstract. This paper proposes the Scene-EEGCNN algorithm, 

which maps the emotional changes of the Zazen practitioner to scenes from Chinese 

cultural heritage, enabling the emotional changes to be represented through these scenes. 

Visualization of emotions can transform them into concrete, perceptible, and visual 

processes. This approach offers several significant advantages, such as making the 

emotions easier to understand, facilitating communication, breaking through cognitive 

boundaries, and assisting in decision-making, among others. 

3 Method 

3.1 The Mapping of Zen-inspired Scenes to Emotions 

In the EEG assessment process, based on the SSED dataset, emotions can be catego-

rized into three types: negative, neutral, and positive, which correspond to three stages 

of a Zazen practitioner: distraction, concentration, and emptiness. According to these 
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emotional classifications, we integrate Zen-inspired scenes to represent these different 

emotional states [17]. 

As depicted in Figure 1, Scene (a) represents the state of distraction in meditation, 

which aligns with the negative emotional state. This scene draws on classical design 

techniques in traditional Chinese gardens, such as “winding paths leading to secluded 

places” and “obscured and borrowed views” [10], which symbolically mirror the psy-

chological characteristics of this stage. The meandering paths and layered vistas create 

a spatial sense of ambiguity and disorientation, requiring constant shifts in perspective 

as one walks—an apt metaphor for the meditator's inner journey through confusion and 

unrest.  

As illustrated in Figure 1, Scene (b) represents the state of concentration in medita-

tion, corresponding to the neutral emotional state. This scene is inspired by elements of 

traditional Chinese gardens, particularly small pavilions and waterside gazebos, which 

are often situated at the intersection of movement and stillness, where land meets water. 

These structures serve to distance the occupant from worldly noise while maintaining 

a deep connection with the natural flow of the environment [11]. The stillness within 

the pavilion and the gentle flow of water beyond mirror the meditative process, wherein 

the practitioner focuses on a single thought and observes the body and mind. This emo-

tional transition—from agitation to calm, from external dependence to internal auton-

omy—embodies the essence of emotion regulation in the meditative experience [18]. 

As shown in Figure 1, Scene (c) represents the state of emptiness in meditation, cor-

responding to the positive emotional state. This scene draws upon the rich visual lan-

guage of meditative Buddhas in Chinese grotto art [12], such as Amitabha in the Mogao 

Caves of Dunhuang or the Vairocana Buddha in the Longmen Grottoes—both of which 

serve as visual metaphors for the manifestation of emptiness. These statues are typically 

depicted in seated meditation, with half-closed eyes and serene expressions, bodies mo-

tionless yet exuding a continuous flow of spiritual energy. They convey a state free of 

attachment and desire, characterized by selflessness and mental stillness. 

 

Fig. 1. Zen-inspired scenes 

3.2 Algorithm Framework 

As illustrated in Figure 2. This study proposes the Scene-EEGCNN algorithm, which 

extracts emotional features of meditators from EEG signals in both time and frequency 
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domains. These features are then classified using two well-established supervised learn-

ing methods: Support Vector Machine (SVM) and Gradient Boosting Decision Tree 

(GBDT) [19]. SVM is widely utilized in emotion recognition tasks due to its strong 

generalization ability in high-dimensional feature spaces. GBDT, on the other hand, 

constructs a powerful ensemble classifier by integrating multiple weak learners (such 

as decision trees), offering advantages in handling nonlinear features and exhibiting 

robust performance. These two methods complement each other, enabling effective dis-

criminative analysis of the power spectrum derived from EEG signals. 

To enhance the reliability of model evaluation, this study adopts the random sub-

sampling validation strategy. This approach involves repeatedly and randomly parti-

tioning the dataset into training and testing subsets, followed by multiple rounds of 

model training and evaluation. Such a process effectively mitigates the bias introduced 

by a single data split, providing a more stable and robust estimate of model performance. 

Compared to traditional k-fold cross-validation, random sub-sampling offers greater 

flexibility, particularly in scenarios involving imbalanced data or limited sample 

sizes—conditions that are especially relevant in this study, which is based on datasets 

labeled with subjective emotional annotations. 

In addition, this study introduces weighted k-Nearest Neighbors (wk-NN) and Lo-

gistic Regression as baseline models for horizontal comparison of recognition accuracy, 

aiming to comprehensively evaluate the effectiveness of the proposed approach. The 

wk-NN algorithm enhances classification robustness by assigning distance-based 

weighting factors to neighboring samples, while Logistic Regression is well-suited for 

both binary and multiclass probabilistic modeling tasks and offers high interpretability. 

By integrating a Chinese cultural scene library, emotions are mapped to scenes a, b, and 

c within the database, thereby visualizing the inner world of the Zazen practitioner. 

 

Fig. 2. Algorithm Framework 

3.3 Feature Extraction 

This work is divided into two parts: the first part focuses on the extraction of emotional 

features from EEG signals, and the second part involves the mapping of EEG emotional 

features to scenes. 
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EEG Feature Extraction. EEG-based emotional feature extraction primarily involves 

multiple dimensions, including frequency-domain features, time-domain statistical fea-

tures, and high-dimensional features derived through deep learning techniques. In this 

study, we calculate features across four frequency bands using a 4-second sliding win-

dow with a 2-second overlap. The mean values of the features extracted from these 

sliding windows are then used as the representative features for each trial. Following 

this procedure, the total number of features extracted per trial is calculated as (1):  

 (9 × 32 + 14) × 4 = 1208 (1) 

In this experiment, the temporal features extracted from the EEG signals include: peak-

to-peak mean, root mean square (RMS) value, and variance. For frequency-domain fea-

tures, we utilized the Hjorth parameters [20], namely complexity, mobility, and activ-

ity, as well as four additional characteristics of the frequency-domain signals, such as 

maximum power spectral frequency, power spectral density, and power sum. The sig-

nificance of these features has been clearly analyzed in prior research [21] and was 

adopted in our experiment. First, the arithmetic mean of the vertical length from the top 

to the bottom of the time series was calculated, followed by the arithmetic mean of the 

squared time series, which were determined as the peak-to-peak mean and RMS value, 

respectively. The next feature is variance, which measures the degree of dispersion in 

the time series.  

The EEG time series are then transformed into the frequency domain using the Fou-

rier Transform, as different frequency bands—such as alpha, beta, theta, and gamma 

waves—exhibit significant variations across emotional states. In particular, frontal al-

pha asymmetry (FAA) has been widely recognized as a key physiological marker for 

distinguishing between positive and negative emotions [14]. Additionally, we compute 

the total power spectrum and further extract the peak power spectral density along with 

its corresponding frequency. Three Hjorth parameters, as previously described, are also 

included in the feature set to enhance the representation of temporal dynamics. 

EEG Features and Scene Information Mapping. The garden space constructed with 

concepts like "curved paths leading to tranquility" and "obscured and borrowed views" 

possesses greater visual complexity and path uncertainty, which induces exploration 

pressure and a slight sense of disorientation in individuals. In Scene A, this type of 

spatial experience is more likely to trigger an increase in δ and θ wave components in 

EEG, manifesting slight anxiety-related EEG features.[22] From the perspective of 

emotional modeling, such a scene can be mapped to the negative emotional features 

extracted from EEG. 

A neutral emotional state is typically considered a state of emotional balance. In 

Scene B, the spatial layout is often open and transparent with soft colors, not directly 

provoking emotional highs but instead creating a calm and reflective psychological at-

mosphere.[23] The EEG features in this scene show stable θ waves and moderate α 

waves, with no significant emotional fluctuation. This neural pattern is highly con-

sistent with a neutral emotional state. 
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A positive emotional state generally represents an elevation of pleasantness, tran-

quility, and awareness [24]. In Scene C, the image of the "Zen Buddha" in Chinese 

grotto art, characterized by a symmetrical, stable seated posture, a gentle and solemn 

expression, and a serene, peaceful spatial atmosphere, evokes a sense of inner stability 

and positive emotional response in the observer. The EEG features in this scene show 

enhanced high β wave activity and increased asymmetry in the prefrontal α waves. 

3.4 Scene-EEGCNN 

The Scene-EEGCNN algorithm proposed in this paper adopts a model fusion strategy 

for Support Vector Machine (SVM) and Gradient Boosting Decision Tree (GBDT), 

combining the prediction results of both GBDT and SVM. Specifically, a GBDT model 

and an SVM model are trained separately. For new samples, both models make predic-

tions independently, and their results are then integrated using a probability-based 

weighted averaging method. This combined approach leverages the strengths of both 

models, thereby enhancing the overall performance and effectiveness of the algorithm. 

In the probability-based weighted averaging method suitable for multi-classification, 

The GBDT model can output the probability of a sample x belonging to each category, 

denoted as 𝑃𝐺𝐵𝑇(𝑖|𝑥), i represents the category; The SVM model can also output the 

probability of a sample x belonging to each category, denoted as 𝑃𝑆𝑉𝑀(𝑖|𝑥), .By assign-

ing weights 𝑊𝐺𝐵𝑇  and 𝑊𝑆𝑉𝑀(𝑊𝐺𝐵𝑇 +𝑊𝑆𝑉𝑀 = 1) to the two models, the fused proba-

bility of the sample x belonging to category m is given by (2). The final predicted cat-

egory m for the sample x is the one with the highest probability, i.e.: (3), where i iter-

ates over all possible categories. 

 SVM( | ) ( | ) ( | )GBT GBTP m x P m x P m x  
 (2) 

 
arg max( ( | ) ( | ))GBT GBT SVM SVMm P i x P i x    

 (3) 

This paper also employs the weighted K-Nearest Neighbors algorithm (WK-NN) and 

Logistic Regression for comparison of recognition rates. The two are combined using 

the Stacking method of model fusion, which can achieve better results in some complex 

tasks. The Stacking method first divides the dataset into a training set and a test set. The 

training set is used to train the WK-NN model and the Logistic Regression model re-

spectively. 

In WK-NN, the weighted voting formula is used. Suppose there are C categories in 

total, and the weighted vote number 𝑉𝑗 obtained by the j-th category is (4), where 𝜔𝑖 is 

the weight of the i-th nearest-neighbor sample, and I(𝑐𝑖 = j) is the indicator function. 

When the category 𝑐𝑖 of the i-th nearest-neighbor sample is equal to j, I(𝑐𝑖 = j) = 1, 

otherwise it is 0 . The sample to be classified is assigned to the category with the most 

weighted votes. In Logistic Regression, a multi-class logistic regression problem is 

adopted. Suppose there are k categories in total. The true probability 𝑦𝑘
(𝑖)

 that the sam-

ple 𝑥(𝑖) belongs to the k-th class is 1 only when the sample actually belongs to the k-th 

class, otherwise it is 0. The probability that the model predicts the sample  𝑥(𝑖) belongs 

to the k-th class is (5). The multi-class cross-entropy loss function is defined as (6). 
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Predictions are made on the test set through these two models to obtain two sets of 

prediction results. These two sets of prediction results are taken as new features, and 

then a higher-level model is trained to fuse the prediction results of these two base 

models. Cross-validation is usually adopted to generate more reliable prediction results 

as new features, so as to reduce the risk of overfitting and thus improve the accuracy of 

the comparison. 

3.5 Prototype system 

Based on the Scene-EEGCNN algorithm, a prototype system was developed, as illus-

trated in Figure 3. This system utilizes a 32-channel EEG signal acquisition device to 

collect brain signals, and simultaneously inputs both the EEG data and the cultural 

scene library into a system powered by the Scene-EEGCNN algorithm. 

First, the collected EEG signals undergo data cleansing to eliminate meaningless 

noise. These cleaned signals are then processed for emotional feature extraction, cate-

gorizing the emotional state into three classes: positive, neutral, and negative. This clas-

sification allows for the identification of the meditator's current inner state. Using the 

Scene-EEGCNN algorithm, the system matches the meditator’s emotional state with 

corresponding scenes from the cultural material library, generating a scene that reflects 

the meditator’s internal condition. This visualization enables others to observe changes 

in the meditator’s inner state through the dynamic transformation of the scenes. 

 

Fig. 3. Prototype system 
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4 Experiments 

4.1 Participants 

A total of 50 participants (25 females and 25 males, with an average age of 23 years 

and 3 months) took part in the study after being fully informed about the nature and 

purpose of the research and providing their consent. All participants had prior medita-

tion training and were capable of clearly recognizing their emotional changes during 

the meditation process. 

4.2 EEG Signal Acquisition 

In this phase, meditation tasks were designed to be both inductive and staged, grounded 

in the cultural context of Chinese Chan Buddhism. Participants were guided through 

three sequential psychological states: distraction (restless mind), focus (concentrated 

breathing meditation), and emptiness (transcendence of emotional fluctuations). Each 

stage was accompanied by specific audio cues, such as the sound of a wooden fish and 

verbal instructions, to help participants stably enter the target emotional state. The cor-

responding time segments were marked and used as reference points for subsequent 

analysis. 

High-precision 32-channel EEG acquisition equipment was used to record partici-

pants’ brain signals during each meditation stage. The sampling rate was set to 500 Hz, 

and electrode placement followed the international 10–20 system, with a focus on the 

frontal, parietal, and central regions. Behavioral labels were recorded simultaneously 

to facilitate training of the emotion recognition model. For each participant, EEG data 

were collected with the objective of consistently guiding them into the emptiness state 

within the meditation process. 

4.3 EEG Preprocessing 

EEG signals undergo a series of preprocessing steps to remove artifacts. First, a 0.5–45 

Hz band-pass filter is applied to eliminate power line interference and DC drift. Then, 

Independent Component Analysis (ICA) is used to isolate and remove non-neural noise 

components such as eye movements, electromyographic (EMG), and electrocardio-

graphic (ECG) artifacts. Finally, the cleaned signals are segmented into 4-second slid-

ing windows and labeled according to the corresponding meditation stages, forming a 

structured, annotated dataset. As shown in Figure 4, EEG signal drift caused by eye 

movements is a typical example of the artifacts addressed in this process. 
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Fig. 4. EEG Preprocessing 

4.4 Feature Extraction 

Multilevel features are extracted from each EEG signal segment. Time-domain features 

are derived directly from the raw EEG waveforms and primarily describe signal varia-

tions over time. The mean value measures the average potential level within a given 

time window, reflecting the overall bias of brain activity. Variance indicates the degree 

of signal fluctuation or activity; higher variance is often associated with heightened 

arousal states, signifying greater neural instability. Hjorth parameters—Activity, Mo-

bility, and Complexity—further characterize time-domain features by quantifying the 

signal’s power, frequency content, and waveform intricacy, respectively. Frequency-

domain features are extracted by applying Fourier Transform and power spectral anal-

ysis to the EEG signals, revealing the distribution of energy across different frequency 

bands. These features reflect the characteristic EEG rhythms associated with various 

emotional states, providing insights into how neural oscillations differ under positive, 

neutral, and negative emotional conditions. 

4.5 Emotion Classification 

In this study, emotions are categorized into three classes: positive, neutral, and negative. 

Based on the multidimensional features extracted from EEG signals, Support Vector 

Machine (SVM) and Gradient Boosting Decision Tree (GBDT) are employed for emo-

tion classification. To enhance the stability and reliability of model evaluation, the ex-

periment adopts the Repeated Random Subsampling Validation method. This approach 

involves repeatedly and randomly splitting the dataset into training and testing sets, 

with each split undergoing independent training and testing processes. This reduces the 

risk of incidental errors caused by a single split and provides a more comprehensive 

assessment of the model’s generalization ability across different data subsets. In addi-

tion to evaluating the performance of SVM and GBDT, weighted k-Nearest Neighbors 

(wk-NN) and Logistic Regression are introduced as benchmark models, enabling a 

comparative analysis of recognition accuracy across different classifiers to validate the 

effectiveness of the proposed method in emotion classification tasks. 
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4.6 Experimental Results 

To validate the effectiveness of the proposed method in recognizing the three emotional 

states—positive, neutral, and negative—this experiment performed multidimensional 

feature extraction on EEG signals collected from participants. Four classification mod-

els—SVM, GBDT, wk-NN, and Logistic Regression—were then trained and tested on 

the extracted features. To minimize the impact of randomness from a single data split, 

a random sub-sampling validation strategy was adopted: in each iteration, 70% of the 

data was used for training and 30% for testing, repeated 30 times. The average recog-

nition accuracy across these iterations was used as the final evaluation metric. 

As shown in Figure 5, the average recognition accuracies for SVM, GBDT, wk-NN, 

and Logistic Regression were 85.7%, 84.3%, 78.1%, and 74.5%, respectively, with 

standard deviations of 2.4%, 2.9%, 3.6%, and 4.2%. Table 1 further illustrates that 

SVM and GBDT achieved significantly higher classification performance compared to 

the other models, indicating their superior robustness in handling high-dimensional 

emotional features. SVM effectively handles nonlinear emotional boundaries through 

kernel mapping, while GBDT enhances overall performance by integrating multiple 

weak classifiers, accommodating the nonlinearity and feature interactions inherent in 

EEG signals. 

 

Fig. 5. Comparison of Model Accuracy 

A further analysis of recognition accuracy for each of the three emotional categories is 

presented in Figure 6. The models demonstrated higher classification performance for 

positive and negative emotions, while the accuracy for neutral emotion was relatively 

lower. This discrepancy may be attributed to the ambiguous boundaries of the neutral 

state in subjective experience, which potentially overlaps with both positive and nega-

tive emotions, making it more challenging to distinguish accurately. 
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Fig. 6. Emotion Recognition Accuracy 

The experimental process is shown in Figure 7. Participants in the experiment experi-

enced a gradual transition from a negative emotional state to a neutral one, ultimately 

shifting to a positive emotional state. During this process, the emotional fluctuations of 

participants were monitored in real-time through EEG signals and translated into cor-

responding changes in virtual scenes. Each image was displayed for 30 seconds to 1 

minute, with the system automatically switching scenes based on the emotional 

changes. Each emotional state corresponded to multiple labels, typically with 5 to 10 

images representing negative, neutral, and positive emotions, incorporating elements 

of Zen culture such as Buddhist sculptures and landscape paintings. The image selec-

tion was performed using a predefined algorithm to ensure alignment with the emo-

tional state. Participants could not actively pause or stop the image generation, but 

could indirectly influence scene transitions by adjusting their emotions, which in turn 

affected the experimental results. 

 

Fig. 7. Experimental process 

5 Discussion 

This research is the first to incorporate EEG signals as a key input, integrate them with 

material library resources, and with the help of the self-developed Scene-EEGCNN al-

gorithm, successfully generate scenes capable of reflecting human inner activities, 
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opening up a new path for research in this field. Through the generated scenes, we can 

more intuitively observe and analyze the inner activity patterns mapped by EEG sig-

nals, which helps to improve and expand the existing theoretical system regarding the 

correlation between the brain and psychological activities. In the medical field, this 

technology is expected to provide new tools for the diagnosis of mental illnesses and 

the evaluation of treatment effects. In terms of human-computer interaction, it enables 

systems to understand user needs more accurately and enhance the interaction experi-

ence.  

Previous research mainly focused on either analyzing the characteristics of EEG sig-

nals alone or generating scenes using fixed templates. There was a lack of an effective 

method to organically combine the two and visualize inner activities.  

Although this algorithm can generate scenes with a certain degree of accuracy, when 

dealing with EEG signals of complex psychological states, there are still cases of scene 

deviation. Moreover, the computational complexity of the algorithm is relatively high, 

and its efficiency needs to be improved when processing large-scale data. The collec-

tion of EEG signals is affected by factors such as individual differences and the collec-

tion environment. The relatively limited sample size may affect the generalization abil-

ity of the algorithm.  

For future research, it is advisable to consider introducing transfer learning tech-

niques in deep learning to further optimize the Scene-EEGCNN algorithm, thereby en-

hancing its accuracy and efficiency in complex situations. 

6 Conclusions 

This research successfully incorporated EEG signals and the material library into the 

self-developed Scene-EEGCNN algorithm. It innovatively achieved the transformation 

from EEG signals to scenes in the material library, with the generated scenes capable 

of representing human inner activities. Through this algorithm, we have built a bridge 

from the electrophysiological signals of the brain to the visual representation of scenes. 

This not only provides a new perspective for studying human inner activities but also 

offers a brand-new approach for technological development in related fields. The ex-

perimental results show that Scene-EEGCNN can effectively analyze the psychological 

features contained in EEG signals and use the material library to generate highly-match-

ing scenes, with an accuracy rate reaching 85.73%. 
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Abstract. Although numerous studies have explored relaxation and
sleep aid through Autonomous Sensory Meridian Response (ASMR) videos
or conventional Virtual Reality (VR) relaxation methods, the integration
of VR 3D animation with ASMR and its comparison to traditional VR re-
laxation methods remains underexplored. To address this gap, this study
proposes a VR-based ASMR 3D animation and examines its potential
therapeutic benefits in promoting relaxation, aiding sleep, and alleviating
stress. First, we investigate a standardized process for creating VR-based
ASMR 3D animation games and its impact on triggering the ASMR tin-
gling sensation in VR environments. Then, we develop a VR 3D environ-
ment game featuring four different natural environments, along with one
ASMR video as a control group. Finally, a comprehensive experiment
is conducted to compare the effects of VR-based ASMR 3D animation,
conventional VR relaxation, and traditional ASMR videos viewed on
a smartphone. Forty seven participants aged 18-35 from Bournemouth
University were recruited and divided into three experimental groups.
Participants’ emotional and physiological responses were monitored us-
ing both subjective questionnaires and physiological data collection i. e.,
heart rate (HR) and electrodermal activity (EDA). Our findings show
that VR-based ASMR 3D animation effectively triggers the ASMR tin-
gling experience and offers superior relaxation, sleep assistance, and emo-
tional regulation compared to watching ASMR videos and conventional
VR relaxation methods, resulting in a significant reduction in anxiety
and stress, as well as increased feelings of calmness and sleepiness. This
research highlights the potential of VR-based ASMR 3D animation as
a promising tool for relaxation and sleep aid, offering new insights into
VRassisted therapeutic interventions.

Keywords: VR-based ASMR · virtual reality · VR relaxation · sleep
aid · 3D computer animation · virtual humans · immersive experience.

1 Introduction

Nowadays, anxiety, sleep disorders, and mental health issues have become global
challenges, particularly among young people. Insomnia, anxiety, and psycholog-



2 Jiahao Du, Lihua You, Jianjun Zhang.

ical problems are on the rise every year. Non-pharmacological methods such
as counsel-ling, yoga practice, travel, and meditation are often used to relieve
anxiety and aid sleep in the early stages when people feel stressed and need to
relax. In addition to these traditional methods, more and more young people are
choosing to watch more convenient and affordable ASMR videos to help with
stress relief and sleep.

Previous research has found that the concept of ASMR was first proposed
by Jen-nifer Allen in 2010 [1]. It refers to a pleasurable and unique sensation
in the cranium, scalp, back, or other body parts triggered by specific visual,
auditory, and tactile stimuli such as vision, sound, and touch. These stimuli are
known as “triggers” [2]. ASMR has been widely studied not only for its potential
to reduce stress and promote sleep [3], but also as a supplementary tool in
psychotherapy [4]. ASMR emphasizes immersion and audiovisual stimulation.
Traditional ASMR content is mainly viewed through smartphones or computers,
which limits the level of immersion it can offer.

With the advancement of VR technology, VR-based ASMR has emerged,
offering a more immersive audio-visual experience. It enhances user interactivity
and presence, allowing users to quickly enter the virtual environment and more
easily triggers the ASMR experience. So far, traditional ASMR research has
been extensively explored in fields like psychology and neurology. While the
application of ASMR in VR holds great potential, research studies on VR-based
ASMR remain limited. In addition, there is a lack of research on how to integrate
3D animation with VR-based ASMR and compare its effectiveness to other VR
relaxation methods.

To address these gaps, this paper proposes an approach to VR-based ASMR
animated games, as shown in Figure 1. Unlike traditional ASMR videos, which
are typically viewed on a 2D screen via a mobile phone or computer, our VR-
based approach allows users to interact in a 3D, user-controllable environment
using a VR headset. We create a 10-minute character animation in which users

Fig. 1. Comparison of the mode between traditional ASMR and VR-based ASMR 3D
animation.
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can freely walk around the room to adjust their distance from the charac-
ter and control the start, pause, and replay of the animation. Additionally, we
developed four distinct 3D environments modeled based on conventional VR re-
laxation mode as a reference group, which allows us to evaluate the effectiveness
of VR-based ASMR animation in comparison with conventional VR relaxation
environments through comparative experiments.

In our experiments, we used questionnaires similar to the Visual Analog Scale
(VAS) [5] and open-ended questions to assess changes in participants’ emotional
states and their evaluations of different VR environments. We also collected par-
ticipants’ heart rates and electrodermal activity during the experience to assess
users’ physiological feedback. The contribution of this paper are summarized as
follows:

·A VR-based ASMR interactive animated game. To achieve this, we
integrate (1) motion capture-based animation, (2) UE5 real-time rendering tech-
niques and a 3D VR space, and (3) the construction of blueprints for user con-
trollable animation.

·A detailed production process of VR-based ASMR 3D animation.
We show the entire production process of VR animation in detail, which provides
insights for the subsequent production of a similar type of animation and VR
virtual human production.

·A comprehensive comparative experiment. Unlike the existing stud-
ies, we compared VR-based ASMR animation with conventional VR relaxation
environments and non-VR ASMR videos viewed on smartphones, collected ques-
tionnaires and physiological data from participants, and analyzed and evaluated
the results. The experiment demonstrated that VR-based ASMR animation of-
fers better relaxation and sleep-aiding effects than conventional VR relaxation
environments, and is more preferred by users.

2 Related Work

2.1 ASMR

Watching ASMR can alleviate symptoms such as insomnia, anxiety, and clini-
cal depression. Its responses involve various elements such as image guidance,
progressive relaxation, meditation, and hypnosis, which can be used to promote
relaxation and optimize sleep [6]. Existing research on ASMR mainly focuses on
three aspects: (1) exploring the elements (triggers) that induce ASMR sensa-
tions, (2) studying the physiological responses of the audience when exposed to
ASMR triggers, and (3) using these two aspects as a foundation for research in
the disciplines of psychology [7], neurology [8], sociology [9], and digital media
[10].

Lochte et al. [11] used nuclear magnetic resonance imaging (fMRI) technol-
ogy to scan the brains of participants when they were watching ASMR videos, in
order to observe which areas of the brain became active. The experiment found
that while the viewers were watching the ASMR videos, there was significant
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activation of the medial prefrontal cortex (mPFC), which is a brain region asso-
ciated with social behaviors, self-consciousness, and social cognition. Andersen
et al. [12] claim that ASMR represents a form of video-mediated non-standard
intimacy. The whispering and touch behaviors that occur in these videos provide
the audience with a sense of distant intimacy. They argue that the popularity
of ASMR videos can be seen as a reflection of society’s need for care, love, and
connection. Smith et al. [13] believe that ASMR is not only a sensory response,
but also an emotional one, as it utilizes feelings of intimacy and comfort, and
embodies social interactions of caring, emotion, and intimacy through the use
of visual and auditory elements. The social care and audio-visual performance
of these ASMR videos are exactly what is missing in the existing VR relaxation
studies.

2.2 VR Relaxation

VR relaxation has been a popular area of VR research and practice in re-
cent years. Several related studies have explored its use as an adjunctive, non-
pharmacological treatment in different healthcare programs, with applications
in sleep aids [14], anxiety relief [15], chronic pain management [16], and depres-
sion treatment [17], offering new approaches to improving mental health and
well-being. The most common VR relaxation studies are based on nature scenes,
which guide users into relaxation or meditation by recording or designing calm
and expansive nature 360° photographs, videos, or VR 3D environments with
adapted sound effects. For example, Veling et al. [18] developed VRelax, which
includes 360° nature videos and some simple interactive animation elements.
Pardini et al. [19] included personalised VR environments in their study, al-
lowing users to select their preferred visual and auditory elements and switch
betweenscenes. Cieślik et al. [20] used Japanese garden aesthetics, relaxation
techniques, and elements of Eriksonian psychotherapy as the foundation for cre-
ating VR 3D environments to alleviate symptoms of depression and anxiety in
elderly women. She et al. [21] proposed a VR meditation model based on image
transformation and positive feedback. Recently, more innovative VR relaxation
experiments have emerged, such as using fractal art images in combination with
VR to provide users with a richer and more engaging relaxation experience [22].

These studies and experimental designs are impressive. However, as human
beings are social creatures, having a sense of social connection with others can
enhance our positive emotions. Compared to conventional natural scenery and
meditative environments, few existing VR relaxation studies have incorporated
anthropomorphic characters. Even when incorporated, they are typically used
only as guides or instructors for users. ASMR videos of role-playing models
are known for their immersive blend of visual stimulation and binaural sound,
which provides audiences with an immersive viewing experience and virtual so-
cial emotions. As with ASMR videos, VR also serves the purpose of providing
an immersive experience to users while allowing people to perceive space in
a virtual environment, breaking down spatial constraints. Combining VR with
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ASMR has the potential to offer a more effective relaxation experience by creat-
ing a sense of realism and immersion that is not possible when watching videos
on a smartphone or computer.

2.3 VR-based ASMR

Since 2020, Although VR-based ASMR has gained popularity in various life sce-
narios. VRchat’s ASMR rooms have attracted significant user attention, and
some of YouTube’s 360° or 180° VR-based ASMR videos have more than 10 mil-
lion views. While ASMR and VR relaxation have garnered significant academic
research attention and are widely applied in various therapeutic environments,
VR-based ASMR has not yet received enough academic research and experimen-
tation. Existing research focuses more on how VR can be used to better trigger
the ASMR experiences. For example, in a study by Aleksandrovich and Gomes
[23] on VR multisensory sexual arousal with 140 adult participants, ASMR au-
dio was used for auditory stimulation. Chung et al. [24] invited 53 participants
to experience both normal VR stereo audio and ASMR audio in VR to validate
that the use of ASMR in VR provides a more immersive experience for partic-
ipants. Peng et al. [25] proposed a model of asmVR, which uses Unreal Engine
to control a 3D character for manipulating the light source to investigate the
visual light triggers of VR-based ASMR. Later, they also developed a Unity3D-
based multiplayer VR system to enhance users’ ASMR experience by integrating
wearable devices with vibrotactile feedback [26, 27]. In conclusion, while exist-
ing research in this area is emerging, there has been limited exploration into
the integration of VR 3D animation with ASMR. Furthermore, current studies
lack a detailed demonstration of the production process, an investigation into
the system’s user experience, monitoring of users’ physiological feedback, and
comparative experiments on VR-based ASMR.

3 Methodology

Different from previous research and experiments, we provide a detailed overview
of the animation game design and experimental processes in Figure 2. Our study
outlines the development of a VR-based ASMR 3D animation production process
and a comparative experimental framework, resulting in a comprehensive and
standardized experimental model of a VR-based ASMR system.

3.1 Outline of VR-based ASMR animation

Existing ASMR videos are generally categorized into two main modes: role-
playing and non-role-playing. The non-role-playing mode focuses on the per-
former’s hands, lips, various props, and the sounds they create, such as eating
podcasts, chewing, kneading slime clay, and other sounds commonly heard in
daily life. In contrast, the role-playing mode of ASMR video involves perform-
ers appearing in specific scenes and engaging in role-play interpretation, which
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Fig. 2. The detailed process of the control experiment.

constitutes the primary focus of this study. In this type of ASMR video, the
performers usually take on roles such as make-up artists, masseuses, medical
examiners, or barbers. They simulate physical touch and interactions with the
audience in an intimate way, blending visual and auditory elements to provide
the audience with a multi-sensory experience.

The VR-based ASMR animation game represents a multimodal synergy, of-
fering an innovative approach to relaxation and sensory engagement. To enhance
the sense of immersion for all users, we replace the gender-oriented make-up and
haircut performance model with a face massage and light-triggered performance
model. This multimodal relaxation model includes the following three primary
stimuli:

Visual: the environment used to engage users’ visual perspective and the
visual frame related gestures and props.

Language: simple and clear command language used to guide users to relax
and follow.

Sound: sound resources used to engage users’ auditory perspective.

3.2 Design of the Visual Stimuli

Based on our analysis of existing video samples and literature on ASMR, we
identified the following performance characteristics of ASMR performers:

Gentle and Non-Aggressive Demeanor. Performers often exhibit gentle
and non-aggressive characteristics to promote relaxation and aid sleep. ASMR
performers should avoid any aggressive outward appearance and convey a sense
of gentleness. Performers often exhibit gentle and non-aggressive characteristics
to enhance relaxation and aid sleep. ASMR performers need to lack aggressive-
ness of the outward appearance with a sense of gentleness.

Gentle body movements. ASMR performances often mimic intimate so-
cial interactions, where performers create a closer social distance with the au-
dience. They typically simulate slow stroking and massaging movements, which
act as visual ’triggers’ to induce a pleasurable tingling or tickling sensation in
the audience.
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Repetitive Actions. The repetitive nature of the performance, such as
simulating repeated stroking of the audience’s face, and similar movements can
provide a relaxing effect of stabilizing emotions and relieving anxiety. Using these
characteristics as a foundation, we developed the necessary steps for our ASMR
3D animation, as outlined in Table 1.

Table 1. The animation process for VR-based ASMR.

In addition to animation, the positioning of the player’s starting point can
effectively convey social distance and perspective. Social distance determines
the level of affinity between the animated character and users, just as in the real
world, where closer proximity usually means a more intimate relationship. In
visual discourse, the choice of close-ups, medium shots, and distant shots suggests
relationships ranging from intimate to combative. Perspective, on the other hand,
suggests power relationships. When users view the animated character from a
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high angle, they are positioned to look down, implying that the character holds
less power than the users. Conversely, when users view the animated character
from a low angle, they are positioned to look up, suggesting that the character
holds more power than the users. When users view the animated character from
an eye-level angle, both share equal power. Therefore, the player’s birth point
should be set at a close-up distance where the user can focus on the character
above the waist and at an eye-level angle, whereby the user can maintain an
equal relationship with the character, as shown in the screenshot result images
of the user’s perspective in Table 1.

Visual elements such as specific scene setups and lighting effects can also en-
hance the ASMR experience. For example, the use of soft lighting and cozy scene
setups can create a more relaxing atmosphere. Similar to synesthesia [28], we feel
warmth when seeing red, coolness when seeing blue, and a sense of deliciousness
when seeing appetizing food. Based on the above discussions, we created a 3D
environment of a quiet study with greenery floor-to-ceiling windows and flowers.
The natural lighting was adjusted to the dim yellow light of the sunset in UE5 to
guide users into relaxation through the visual environment, as shown in Figure
3.

Fig. 3. VR-based ASMR environment.

3.3 Design of the Language and Sounds Stimuli

The main equipment used for sound recording in this study was the TASCAM
DR-40X recorder, which captured audio in two categories:

VR-based ASMR sounds. Binaural and 3D surround sound is a major
feature of ASMR audio. Performers usually use whisper as one of the “triggers”
in ASMR role-playing, by adjusting the distance to the speech microphone and
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post-processing sound debugging, they can create an immersive spatial experi-
ence through the use of subtle and gentle whispering sounds, usually lip-teeth
sounds such as “s”, “sh”, “k”, etc. [29].

Prop Sounds. The sound of props is also an important “trigger”. In this
experiment, we recorded the vibration sound of a tuning fork and the water
sound produced by the massage puck when massaging the skin. To enhance the
richness of the sound effects, we recorded various detailed sounds including the
ringing of fingers, the rustling of clothing, and the subtle sound of massaging the
skin to recreate the most realistic sound experience. At the end of the recording,
we used Adobe Audition (Au) for noise reduction and the Panorama plugin to
create a more realistic 3D head surround sound.

3.4 Construction of VR environments and game blueprints

Most VR relaxation studies have used a variety of nature-based virtual environ-
ments such as forests, islands, mountains, lakes, waterfalls, and most commonly
beaches to promote relaxation.

We used 3D modeling techniques, SpeedTree plant animation, UE5 environ-
ment creation, and Quixel Bridge open-source assets to create 4 VR environ-
ments, shown in Figure 4. 4 of them are normal VR relaxation environments,
including snowy mountains, rivers, lakes, caves, meditation rooms. Based on pre-
vious research, we recorded binaural nature sounds such as rivers, birds, water
droplets, wind blowing through leaves accompanied by meditation-guided music
to assist users to achieve relaxation.

The game blueprints are primarily used to link users with the VR environ-
ments. A simple control system is preferred, as it allows users to focus more on

Fig. 4. Conventional VR relaxation environments.
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relaxation compared to a complex control system. In our design, users can use
VR joystick buttons or computer-specific keys to switch and experience different
VR environments, as well as control the start, replay and pause of animations.

3.5 Watch ASMR Videos on Smartphone

An ASMR video was selected and taken from YouTube by the author. The video
length is the same as the VR-based ASMR animation game length of 10 minutes,
including (1) face massage, (2) light triggers, (3) tuning forks, and (4) whispers
and other triggers that are the same as the game.

3.6 Questionnaire Survey

We designed a set of participant questionnaires for this experiment comprising
the following sections:

Sample characteristics: The basic information about participants was col-
lected through recording participants’ age and gender, their experience and fre-
quency of using VR, watching ASMR videos, and using VR-based ASMR.

Emotion state change measurements: A visual analogue scale (VAS)
similar to the one used by Navarro-Haro et al. [5] was used to monitor partici-
pants’ emotional and cognitive changes before and after the experiments.

Experiment evaluation form: This section contains a list of “trigger”
elements similar to those used in ASMR research by Barratt and Davis [30].

Open-ended questions: These questions allow participants to describe
their feelings and provide suggestions about the experiment.

3.7 Participant Physiological Data Monitoring

In this study, we used the Emotibit bracelet [31] to monitor participants’ heart
rate (HR) changes and electrodermal activity (EDA) during a VR-based ASMR
3D anima-tion experiment, a conventional VR relaxation experiment, and a
smartphone-based ASMR viewing experiment. EDA is an indicator of physi-
ological arousal during emo-tional, cognitive, and physical behaviours and de-
creases with physiological relaxation such as sleep or rest [32]. Similarly, changes
in HR also represent the level of calm-ness of the participant. Measures of par-
ticipant HR and EDA changes have been similarly used in several studies of
physiological changes in ASMR audiences. For example, Engelbregt et al. [33]
examined the effects of ASMR videos on mood, at-tention, HR, EDA, EEG (elec-
troencephalogram), and their interactions with personali-ty factors in 38 young
adults. Their study found that in all participants, regardless of whether they
felt tingling or not, HR decreased while watching the ASMR videos, suggesting
that ASMR is associated with relaxation. Additionally, participants who expe-
rienced ASMR-triggered sensations had higher EDA after watching the ASMR
video. This increase in EDA levels contradicts the relationship between ASMR
and relaxation. However, Poerio et al. [7] also found that ASMR elicits arousal
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in individ-uals who experience it, suggesting that ASMR may be associated
not only with relax-ation but also with increased arousal. These results suggest
that the tingling sensation triggered by ASMR has a physiological basis and is
central to the experience itself. Therefore, we used HR data to assess whether
participants were relaxed and EDA data to determine whether participants were
ASMR-triggered.

4 Experiment

To assess the effectiveness of VR-based ASMR 3D animation compared to conven-
tional VR relaxation in promoting relaxation, aiding sleep, and relieving stress,
we conducted a controlled trial by recruiting 47 participants and engaging them
in two different VR games and ASMR videos viewed on a smartphone. The ex-
periments were developed in Unreal Engine 5.3.2 as a game program for the
Windows platform, and the VR device we chose to use was the HTC Vive Pro
2.

4.1 Participant

A total of 47 Bournemouth University students participated in this experiment,
aged between 18 and 35 years. The group consisted of 23 females and 22 males
including 23 undergraduates, 11 postgraduates, and 11 PhD students. The par-
ticipants had varying levels of exposure to VR systems and knowledge of ASMR.
Among them, 33 had experience with VR, 10 had used VR for relaxation, 25
had watched ASMR videos, and 3 had experience with VR-based ASMR. All
participants provided in-formed consent to participate in the 3 experiments. To
ensure the accuracy of the experimental data, the 47 participants completed all
three experiments in a random order, with a one-week interval between each suc-
cessive experiment. Each experi-ment consisted of a five-minute pre-experience
questionnaire, a ten-minute VR or mobile phone experience, and a five-minute
post-experience questionnaire.

4.2 Procedure

Before the experiment began, the participants completed a form to provide their
basic information and an emotional state scale, which was used to quantify
the par-ticipants’ emotional state. Following this, they were seated in a chair,
equipped with an emotibit physiological data measurement bracelet and a VR
device. Then, they adjusted the VR device to their preferred viewing angle to
ensure comfort and an optimal experience, as shown in Figure 5.

In the control trial of conventional VR relaxation, during the preparatory
testing phase of the experiment, we found that when participants were asked
to experience four VR relaxation environments within ten minutes, they usu-
ally switched quickly between different scenes to experience the novelty of VR,
which did not help relaxa-tion. Additionally, some participants indicated that
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Fig. 5. A participant experiencing (a) Conventional VR relaxation. (b) VR-based
ASMR. (c) ASMR video on smartphone.

experiencing only one environ-ment for ten minutes would be boring. Therefore,
the participants were given the op-tion to select their preferred two environ-
ments from the four different 3D environ-ments we created. This flexibility al-
lowed participants to tailor the experience to their preferences, ensuring a more
personalized and engaging relaxation session. Once everything was set up, the
participants could switch between the VR environments and animations by us-
ing the VR joystick or specific computer buttons. After each experiment, the
participants were asked to complete the Emotional State Scale again to assess
their emotional changes before and after the experiment. They also filled out the
Experiment Evaluation Form to record their ratings of the experiment. Finally,
the participants answered open-ended questions to share their feelings during
the experience.

5 Results and Discussion

5.1 Results of the Participant Questionnaire

The Participants were asked to indicate whether they experienced any triggered
sen-sations such as pleasurable “tingling” or “numbing” sensations while experi-
encing the VR-based ASMR 3D animation and ASMR videos by answering with
’yes’ or ’no’. The final result showed that 43 out of 47 participants experienced
ASMR-triggered sensa-tions in the VR-based ASMR animated game experiment,
while 36 out of 47 partici-pants experienced ASMR-triggered sensations in the
experiment using a smartphone to watch ASMR videos. The participants who

Table 2. Different triggers and their number of selected times, (a) VR-based ASMR,
(b) ASMR video on smartphone. captions should be placed above the tables.



VR-Based ASMR Animation: A Comparative Study on Relaxation and Sleep Aid 13

answered “yes” were asked an addi-tional question using the asked to select the
elements that triggered their sensations, as shown in Table 2. The table shows
VR-based ASMR animations have a signifi-cantly higher number of departures
than ASMR viewed on smartphones with the same type of “triggers”. This means
the VR-based ASMR animation game is more effective in triggering the ASMR
experience in users compared to watching the ASMR videos on a smartphone.

The section of Emotion State Change Measurements section was used to
monitor participants’ emotional and cognitive changes before and after the ex-
periment. The “Sleepy” option was added to assess the sleep aid effect of the
research program. The participants were asked to complete the same form before
and after the experi-ment by rating the following eight emotions on a scale of 1 to
7 (1 = “not feeling at all”, 7 = “feeling very much”): sleepy, calm/relaxed, happy,
anxious, sad, angry, surprised, and energized/energetic. The data obtained from
the three experiments were divided intothree groups, with each group including
47 participants’ pre-experience state (Time1) and post-experience state (Time2)
from one experiment. Based on the algorithm in [22], the mean value (M) and
standard deviation (SD) of the difference between Time2 and Time1 were cal-
culated to obtain the participants’ standardized change values across the three
experiments, as shown in Figure 6. The “Happiness”, “Sleepy”, “Calm/relaxed”,

Fig. 6. Standardised change values (T2-T1) for all outcomes as a function of condition.

“Surprise”, and “Energy/vigour” scores increased after the experience. The mean
value of the “Calm/relaxed” state of the VR-based ASMR animation M(T2-T1)
= 1.98 which is 1.59 times higher than conventional VR relaxation and 1.56 times
higher than the ASMR video. The mean value of the “Sleepy” state M(T2-T1)
= 1.56, which is 2.69 times more than conven-tional VR and 1,37 times than
ASMR videos. And the “Sadness”, “Anger”, and “Anxiety” scores decreased after
the experience. The mean value of the “Anxiety” state of the VR-based ASMR
animation M(T2- T1) = -1.31, which is 1.64 times lower than conventional VR
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relaxation and 1.17 times lower than the ASMR video. This indicates that both
the experimental and control groups were effective in relieving anxiety and help-
ing users relax. The results showed that the VR-based ASMR 3D animation
led to greater changes in multiple emotional state scores than the conven-tional
VR relaxation mode and ASMR videos and has a stronger ability to regulate
emotions and promote sleep and relaxation.

After completing the three experiments, participants were asked to choose
their favorite of the three experiences. Of the 47 participants, 32 selected the
VR-based ASMR animation game, 9 chose the ASMR video on a smartphone,
and 6 preferred the conventional VR relaxation. The VR-based ASMR animation
game was favored by 68.11

At the end of the experiment, the participants were asked to answer a series
of open-ended questions in writing.

Open Question 1 (OQ1): “Please summarize your overall response to the
experi-ence as detailed as possible”.

OQ2: “Will you be happy to try this type of experience in the future?” (An-
swer "yes", "no" or "uncertain" and explain why). This question explored the
motivational aspects of the intervention (uptake likelihood)

OQ3: “If you have done any guided relaxation exercises such as ASMR video
meditation or guided breathing outside of VR or with VR in the past, how does
this compare to your previous experience?”

A lot of positive feedback was gathered from the participants in this session.
For example, one participant said, “I have previously watched some ASMR videos
online. The VR-based ASMR animation is better than the videos. And this is
the first time I’ve felt relaxed and a bit sleepy through ASMR.” (Participant
6) Another participant said, “I have social barriers, so avatars that aren’t real
people make me more re-laxed.”(Participant 13) and “I’d like to experience more
different ASMR games for VR, preferably with the option to personalize the
character to my liking.” (Partici-pant 41).

The majority of participants in the VR-based ASMR animated game reported
their feelings “relaxed”, “sleepy”, “immersive” and found the experience “more
interesting” at the end of the experiment.

There were also a small number of participants who expressed different views:
“I prefer natural scenery, and watching VR of natural scenery makes me feel more
re-laxed”, and “It is more convenient to watch ASMR videos on phones, although
VR provides a better sense of immersion, the VR equipment is too heavy!”

5.2 Results of the Participant Physiological Data

Figure 7 shows the real-time physiological changes recorded by the Emotibit
over a 10- second period while participants experienced different VR games and
watched a video on a smartphone during the experiment. All experiments re-
sulted in a decrease in HR, indicating a gradual calming of the participant’s
emotions. Compared to (a) and (c), the HR drop in (b) is more pronounced,
which can be interpreted as a better relaxation effect provided by VR-based
ASMR during this 10- second period. Paradoxically, however, the EDA data,
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Fig. 7. The participants’ HR and EDA data displayed in real-time by the EmotiBit
device for (a) conventional VR relaxation, (b) VR-based ASMR, (c) ASMR video on
smartphone change values (T2-T1) for all outcomes as a function of condition.

which reflects emotional arousal, showed signifi-cant changes in both the VR-
based ASMR experiment and the ASMR video. And compared to ASMR videos,
the EDA curve for emotional arousal in VR-based ASMR animations produces
changes in a shorter time and is flatter.

Fig. 8. (a) HR comparison, (b) EDA variability comparison.

Figure 8 (a) shows the one participants’ HR changes throughout the expe-
rience of the different experiments. Compared with conventional VR relaxation
and ASMR video, VR-based ASMR resulted in a more significant decrease in the
participants’ HR. Together with the results from the previous emotional state
change questionnaire, it can be concluded that VR-based ASMR has a better
relaxation effect and can help users reach a calm state in a short period of time.

Figure 8 (b) shows the change in EDA for a participant who experiences three
different experiments, and it can be seen that when the participant experiences
conventional VR relaxation, almost no change in EDA is produced. Combined
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with the previous data analysis, it can be concluded that conventional VR relax-
ation can provide users with a sense of relaxation and immersion but has little
effect on their emotional arousal. Compared to ASMR videos, VR-based ASMR
animations present a more stable effect in terms of EDA changes, which can
consistently awaken users’ emotions.

Fig. 9. EDA variability comparison.

On the other hand, the EDA data in Figure 9 shows that the two different
participants have these changes at nearly the same time, which corresponds to
the time of the animation settings that we have shown in Table 1. This proves
that the VR-based ASMR 3D animated game that we have created successfully
uses different triggers we have set up to induce ASMR sensations in users. The
elevated electrodermal activity (EDA) observed reflects emotional arousal, while
a decrease signifies emotional diminishment. This may be the reason why the
positive scores of “happy” and “sur-prised” in the participants’ emotional state
scale are higher than those of convention-al VR relaxation. It can bring calmness
and relaxation to users while simultaneously awakening positive emotions.

The HR data acquisition is one every 2 seconds, and after EmotiBit’s self-
contained data processing the HR data for each participant in an experiment is
about 330. Taking 30 data per minute to calculate the average value, one par-
ticipant in an experiment can get 10 heart rate averages, respectively calculate
the HR average value per minute for each participant in each experiment, and
finally calculate the HR average value per minute for 47 participants in different
experiments can be obtained in Figure 10.

The HR of the participants decreased in all three experiments, which indi-
cated that all three experiments were able to calm and relax the participants.
Compared to the other two experiments, the VR-based ASMR animation game
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Fig. 10. (a) Comparison of the HR average value by different experiencesDA variability
comparison, (b) Comparison of the number of eda data changes generated by different
experiences.

showed a faster HR drop in the same amount of time, having a faster relaxation
efficiency.

Since individual skin conditions vary and EDA data is affected by a variety of
factors (temperature, sweat glands, body hair, etc.), it is difficult to collect the
same EDA data across different participants. We assessed whether strong and
continuous EDA changes occurred within a short period of time (Figures 9 and
10). As shown in Figure 12, all 47 participants experienced the three different
relaxation methods. Of these, 29 exhibited strong EDA changes during the VR-
based ASMR animation experience, 5 during conventional VR relaxation, and
20 while watching the ASMR video on a smartphone. These results suggest that
compared to conventional VR relaxa-tion, the ASMR-related experience provides
users with more intense and sustained emotional arousal. Combined with the HR
reduction and the participants’ emotional state change questionnaire results, we
infer that VR-based ASMR provides effective relaxation in terms of sleep aid
and anxiety relief while awakening positive emotions in users.

6 Results and Discussion

In this paper, we integrated VR 3D animation with ASMR to develop a VR-based
ASMR animation and investigated its effectiveness in promoting relaxation and
aid-ing sleep. Specifically, we detailed the production process, the development
of a VR-based ASMR 3D animation game, and a comprehensive experiment
designed to compare the outcomes of our method with traditional VR relaxation
techniques and ASMR videos. The experimental results demonstrate that the
VR-based ASMR 3D animation game can effectively alleviate negative emotions,
provide positive feelings, and help reduce insomnia. Since VR-based ASMR has
not been extensively studied to date, we hope our findings provide new insights
for researchers interested in VR relaxation and VR avatars. In future studies
we plan to incorporate MetaHuman technology and personalized characters and
environments to further enhance the relaxation experience for users. Considering
the variability in individual factors such as sweat glands, skin conditions, and
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body hair, we will expand the participant pool to improve the accuracy of physi-
ological data collected by the detection bracelet. Since there is a gap in research
in related fields for analyzing participants’ physiological data, it is difficult to
find simi-lar studies for reference and comparison. In addition, there is a lack of
established methodology for processing physiological data in our experiments.
We will address this issue and analyze the data more comprehensively. In future
research, we will also incorporate eye tracking and other monitoring methods to
provide more diverse data and further strengthen the scientific support for the
study.
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Abstract. Cinematic camera control is a cornerstone of visual story-
telling in film, animation, and interactive media, yet remains a labor-intensive
task typically handled by expert artists. While recent deep learning
methods automate camera placement and movement from video, they
depend heavily on large, annotated video corpora and struggle to gen-
eralize to novel character interactions. In this work, we propose a novel
framework that learns to predict Toric camera parameters directly from
two-person 3D motion data, bypassing the need for preexisting visual
datasets. Our model employs a dual-stream Transformer to encode each
character’s motion, fuses these streams via bidirectional cross-attention
to capture inter-character dynamics, and incorporates explicit spatial
vectors to ground geometric relationships. A lightweight fusion network
then regresses per-frame Toric parameters, yielding smooth, composi-
tionally balanced camera trajectories. To enable training and evalua-
tion, we introduce a new dataset of over 3,400 motion–camera sequences
spanning diverse interaction scenarios. Experiments demonstrate that
our approach significantly outperforms a strong Example-Driven Cam-
era baseline and ablated variants in trajectory accuracy, framing quality,
and temporal coherence.

Keywords: Virtual cinematography · 3D human motion · Computer
animation.

1 Introduction

Animation is widely recognized as a compelling storytelling medium, uniquely ca-
pable of delivering narratives through visual framing. Expressive character por-
trayals, richly detailed environments, and nuanced lighting collectively form the
foundation of animated storytelling. However, the role of cinematography, partic-
ularly shot composition and camera positioning, in influencing audience emotion
and narrative coherence is frequently underappreciated in the animation indus-
try. Effective shot design goes beyond selecting camera angles or movement tra-
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Fig. 1. Our method automatically generates cinematic camera motions from 3D in-
teractive motion sequence (left), producing smooth, compositionally balanced camera
views (right) that follow professional filmmaking conventions.

jectories; it requires intentional planning and precise positioning to clearly com-
municate character interactions, relationships, and psychological states. There-
fore, the camera serves as an essential tool enabling directors to articulate artistic
intentions, significantly enhancing narrative clarity and emotional resonance.

Despite its critical role, identifying optimal cinematographic compositions
in animation is traditionally a complex and labor-intensive task, demanding
significant expertise from directors and specialized artists. Typically, produc-
tion teams rely on manual refinement and iterative experimentation to finalize
camera movements and settings. This conventional approach is inefficient, often
escalating production costs and creating technical obstacles. Small and medium-
sized animation studios are particularly affected, as they often lack access to
skilled personnel and sufficient technical resources. Consequently, these limita-
tions hinder creative exploration, negatively impacting the overall quality and
expressive potential of animated narratives.

Recent advancements in deep learning offer promising avenues to automate
the processes of camera blocking and shot composition. Current deep learning
methods successfully estimate camera motion and framing from existing visual
datasets, closely replicating professional cinematographic techniques. However, a
critical drawback of these techniques is their dependency on extensive, predefined
visual datasets. This dependence makes their performance highly sensitive to
the diversity, quality, and representative nature of the available training data,
limiting their adaptability and effectiveness when dealing with novel character
interactions or unfamiliar animation contexts.

To address these limitations, this paper introduces a novel method that elim-
inates reliance on predefined visual datasets by leveraging 3D motion data to
estimate camera placements and cinematographic composition (Figure 1). Our
approach specifically processes interactions between pairs of animated charac-
ters, utilizing deep learning integrated with Toric features to capture spatial
orientations and relative positions in 3D space.
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In summary, this paper makes the following key contributions:

– To the best of our knowledge, this is the first work to explore how 3D human
motion can be leveraged to learn cinematic camera movement, bridging the
gap between character motion and cinematographic principles.

– We construct a dataset that explicitly links human motion with camera
parameters, providing a valuable resource for future research in motion-aware
camera control.

– We propose a novel framework that models the spatio-temporal dynamics
between character motion and camera movement, enabling more natural and
expressive cinematography.

– Our model outperforms baseline methods and ablation variants, demonstrat-
ing its effectiveness in learning cinematic camera motion directly from char-
acter movement.

2 Related Works

Designing dynamic camera movements [1–7] poses a formidable challenge, shaped
by multiple factors and spurring considerable inquiry into methods of synthe-
sis and control. Early work regarded the camera planning task as a constraint-
satisfaction problem, using constraint-based optimization to achieve desired cam-
era behaviors [8–10]. With the rise of deep learning, neural network-driven ap-
proaches have grown increasingly prevalent. Jiang et al. assembled a film clip
dataset, which encompasses camera movement and actor motion, to investigate
synthesis from film references or textual prompts via LSTM and diffusion mod-
els [11–14]. Meanwhile, Wu et al. introduced a GAN-based controller designed
to produce camera movements suited to storytelling contexts [4]. Additional
progress includes techniques for transferring cinematic effects to 3D virtual en-
vironments, one of the studies develops a differentiable pipeline to estimate and
optimize camera and character motions from existing films, facilitating retarget-
ing to 3D engines [15].

In gaming, considerable effort has been invested in automated camera control
to elevate player engagement. Li and Cheng introduced a module for third-person
tracking, while Rucks and Katzakis [5] created CameraAI to reduce occlusions
during pursuit phases. Evin et al. [16] further incorporated recognized cinemato-
graphic standards into a semi-automated system, Cine-AI, to produce immersive
in-game cutscenes.

Automatically generating camera work for dance sequences poses additional
hurdles, given the interplay of shot variety, music, and intricate dance move-
ments. Xie et al. [17] explored deriving camera trajectories from dancer poses,
though their solution did not fully integrate musical influences and required ex-
tra keyframe data. To address these issues, Wang et al. [1] presented the first
3D dance-camera-music dataset (DCM) alongside a transformer-based diffusion
model, DanceCamera3D, to tackle this challenge. However, their approach relies
on smoothing to handle abrupt transitions, which can detract from the effective-
ness of sudden camera switches.
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Other research has attempted to compute camera parameters between keyframes
using neural networks [17, 14], yet these techniques often result in jitter or oth-
erwise unsatisfactory motion, prompting additional smoothing or resorting to
simpler 2D formats that can curtail creative flexibility. Consequently, refining
camera movement—particularly within 3D dance contexts—remains an ongoing
and demanding area of investigation.

3 Dataset

Fig. 2. Sampled motion-camera sequences from our dataset. Each row shows a 6-second
human interaction clip with corresponding dynamic camera views.

We construct a motions-camera dataset specifically tailored for the motion-
guided cinematography generation task. Our dataset comprises 3442 motions-
camera sequences, each capturing dynamic interactions and camera responses.
Every sequence spans 6 seconds, corresponding to 120 frames captured at 20
frames per second. These sequences encompass diverse interaction patterns, spa-
tial relationships, and dynamic variations between characters, along with corre-
sponding professional-level camera movements. This dataset facilitates the de-
velopment and training of deep-learning models capable of generating expressive,
coherent, and cinematic camera movements guided purely by dual-character 3D
motion data.

We extract motion sequences directly from video clips, which are in turn
sourced from raw full-length films, television series, and stage performances.
The selection of these clips leverages annotations from SHOTDECK, a com-
prehensive online database of cinematic shots, which provides detailed tagging
information such as character count, camera angles, and exact timestamps. Each
retained SHOTDECK shot is then mapped back to its original video source us-
ing the provided timestamp as a reference point. Around these timestamps, we
manually inspect and extract continuous segments from the original videos, fo-
cusing exclusively on clips lasting at least 6 seconds without any intervening
camera transitions.
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For each selected video clip, we first detect and track the bounding boxes of
the two main characters frame-by-frame. Bounding boxes are propagated across
consecutive frames by calculating the Intersection-over-Union (IoU), ensuring
consistent character identification and reliable tracking throughout the entire
sequence. Subsequently, we apply MeTRAbs [18], which estimates 2D keypoints
and relative 3D pose and applies perspective geometry optimization to recover
the absolute 3D root position. Each character’s pose is represented using the
SMPL-22 joint model [19]. Finally, to enhance temporal smoothness and mo-
tion coherence, a Gaussian filter is applied to each joint trajectory along the
temporal dimension, resulting in a set of two-character 3D motion sequences. In
MeTRAbs, the camera’s 3D coordinates are defined at the origin, however, we
do not directly use these raw camera coordinates as camera features. The specific
feature transformations applied for camera representation will be detailed in sec-
tion 4.2. Figure 2 provides visual examples of our dataset, illustrating extracted
motion data alongside camera data.

4 Methodology

4.1 Motion Data Representation

The motion of a single character over N frames is expressed as x1:N = {xi}Ni=1,
where each xi encodes the pose information at frame i. Specifically, xi consists
of the rotations of 22 out of the 24 joints in the SMPL model (excluding the
two hand joints) and the 3D global translation of the root, which together define
a rigged and skinned 3D character. Each joint rotation is represented by a 3 ×
3 matrix, but instead of using the full matrix, only its first two orthogonal
column vectors are retained, resulting in a 6D representation per joint. These
joint rotations are estimated through inverse kinematics from the corresponding
3D joint positions. To represent root translation in a compatible form, it is
converted into a 6D vector by appending three zeros before concatenating it
with the rotation vectors. Consequently, xi is stored as a 23 × 6 matrix, which
is then flattened into a 138-dimensional vector. The full motion sequence is thus
represented as a tensor of shape N × 138.

For scenarios involving two characters, their motion representations are com-
bined frame-wise. However, since each character’s motion is originally repre-
sented in its own local coordinate system where the root is fixed at the origin in
the first frame, directly merging their sequences into a shared 3D space can lead
to significant overlaps between the two characters over time. To prevent this, an
offset vector D ∈ R9 is introduced to encode each character’s initial orientation
and position relative to the global coordinate system at the first frame. The
first six elements of D capture the character’s orientation, represented by the
first two orthogonal vectors of its rotation matrix, while the last three elements
define its initial position in the global frame. The character’s facing direction is
determined by assuming that the 3D line connecting its shoulder joints remains
parallel to the xz-plane, with the angle between this line and the x-axis defining
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Fig. 3. Toric parametrization of a two-shot. The camera can orbit around the baseline
AB by an azimuth φ (blue arrows) and raise or lower itself with an elevation θ (red
arrows) while guaranteeing that both characters remain on screen.

its initial orientation. Notably, D is computed solely from the first frame but is
applied consistently across all subsequent frames.

As a result, a two-character motion sequence is represented as (x1:N
A , x1:N

B ,
DA, DB), where (x1:N

A , x1:N
B ) denote the motion representations of the two char-

acters in their respective local coordinate frames, and (DA, DB) encode their
initial spatial offsets in the global frame.

4.2 Camera Data Representation

This project follows the Toric formulation of Lino and Christie [7], because it
couples camera motion to the on-screen layout of two protagonists A and B while
remaining independent of focal length and aspect ratio (Fig. 3). To compute the
Toric coordinates, we utilize data extracted from the raw videos, which provides
the camera position in world coordinates xi

C (considered as the origin), the
world coordinates of the character xi

A, x
i
B , and their corresponding screen-space

coordinates piA, p
i
B .

Opening angle: Since the field of view (FOV) f and aspect ratio l are known,
the screen-space coordinates are transformed into normalized device coordinates
(NDC), allowing the computation of sight-line opening αi ∈ (0, π) directly from
screen-space information:

Sx =
1

tan
(
f
2

) (1)

Sy = Sx l (2)

p′ik = (
pikx
Sx

,
piky
Sy

, 1), k ∈ {A,B} (3)
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Fig. 4. Overview of our dual-stream Toric camera prediction architecture. Per-frame
joint positions for persons A and B (x1:N

A , x1:N
B ) are first linearly projected and

augmented with learnable positional encodings, then processed by separate Trans-
former encoder stacks to produce sequence features. These two streams interact via
a Multi-Head Motion Cross-Attention module, which allows each person’s motion con-
text to inform the other. Simultaneously, the per-frame relative spatial vectors DA

and DB are mapped through lightweight linear layers and fused by the Cross Vector
Processor into geometric feature sequences. The four resulting feature streams are con-
catenated and passed through a final linear layer to regress the per-frame Toric camera
parameters x1:N

C .

αi = arccos

(
p′iA · p′iB

||p′iA|| · ||p′iB ||

)
(4)

where p′iA and p′iB are the normalized screen-space projections of the character.
In-plane basis: Let ui be the unit vector from target A to target B, and let
w = (0, 1, 0)T denote the world-up direction. Project w onto the plane orthogonal
to ui,

r = normalize
(
w − (w·ui)ui

)
(5)

and obtain a second in-plane axis by a 90◦ rotation,

ti = ui × ri (6)

The pair (ri, ti) thus forms an orthonormal basis of the plane perpendicular to
the baseline AB.
Elevation and azimuth: Denote the midpoint of the baseline by mi and the
camera offset by vi = xi

C −mi. The elevation θi ∈ [−π
2 ,

π
2 ] and the azimuth φi ∈

(−π, π] are recovered from the offset vector vi using the following expressions:

θi = atan2
(
vi ·ui, vi × ui

)
(7)

φi = atan2
(
vi ·ti, vi ·ri

)
(8)

Learning descriptor: Since α is uniquely determined by these two points, our
per-frame descriptor stores only the screen positions and the two control angles
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c1:N = {piA, piB , θi, ϕi}Ni=1 ∈ R6N (9)
This 6D sequence tightly couples the camera trajectory to the actors’ screen

composition, guarantees they remain in shot, and provides a compact manifold
on which our network learns cinematographically plausible camera motion.

4.3 Network Structure

We propose a novel neural architecture to predict camera control parameters.
Given two motion sequences and their initial spatial configuration, our model
integrates dual-stream temporal encoding with structured spatial reasoning to
infer how the camera should behave in response to the evolving motion con-
text. Each character’s motion sequence is first projected into a latent space and
encoded via a multi-layer Transformer encoder with learnable positional encod-
ing. Formally, for motion inputs x1:N

j ∈ RN×138 with j ∈ {A,B}, the temporal
features are obtained as:

z1:Nj = x1:N
j We + P (10)

h
1:N
j = softmax

(
z1:N
j WQ(z1:N

j WK)T

√
E

)
z
1:N
j WV (11)

where We is the shared embedding matrix, P is a learnable positional encoding,
and WQ,WK ,WV are the standard self-attention projections. This time series
Transformer module encodes each character’s motion in context, enabling the
model to reason about movement evolution over time.

To explicitly model inter-character interaction, we introduce a Motion Cross-
Attention module that performs bidirectional attention between the two encoded
motion sequences. Specifically, each character’s representation is refined by at-
tending to the other’s contextual features:

h̃
1:N
A = h

1:N
A + softmax

(
h1:N
A WQ(h1:N

B WK)⊤
√
E

)
h
1:N
B WV (12)

h̃
1:N
B = h

1:N
B + softmax

(
h1:N
B WQ(h1:N

A WK)⊤
√
E

)
h
1:N
A WV (13)

This mechanism refines with cues from and vice-versa, enabling the network to
model reaction timing, synchronised gestures and antagonistic behaviours that
are invisible to single-stream encoders.

Static spatial cues are injected through two weight-sharing Cross Vector Pro-
cessors. Each 9-D global pose vector is linearly projected and cross-attended
against the partner’s projection, producing relation-aware embeddings. These
embeddings are broadcast along the temporal axis so every frame is conditioned
on the initial spatial relationship.

The temporally contextualized motion features (from both characters) and
their respective spatial embeddings are concatenated along the feature dimen-
sion. This representation is processed through a fully connected fusion network
composed of linear transformations, ReLU activations, and layer normalization,
and finally projected to an output of dimension, which corresponds to the pre-
dicted Toric parameters at each time step.
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5 Experiments

We conduct our experiments using a dataset where 80% of the samples are
allocated for training, while the remaining 20% are used for testing. The model
is trained for 20,000 steps with a batch size of 32. We utilize an Adam optimizer
with a learning rate of 1 × 10−5 to update the model parameters. To evaluate
the effectiveness of our approach, we perform ablation studies to analyze the
impact of different model components. Additionally, we conduct comparative
experiments against baseline models. The results are quantitatively analyzed
through standard evaluation metrics, and we further validate our findings via a
user study, gathering qualitative feedback on the model’s applicability.

5.1 Evaluation Metrics

To evaluate the generated camera motions, we adopt three complementary met-
rics: FrameFID, SeqFID and Pose Distance Error (PDE ). FrameFID measures
the framing quality of individual frames based on the ratio of visible body parts
and their screen projections, following Wang et al. [1]. SeqFID quantifies the dis-
tributional distance between generated camera motions and real motions from
the dataset. It is computed using features extracted by a self-supervised VAE-
Transformer encoder. PDE directly assesses geometric fidelity by averaging, over
all frames, the positional discrepancy between predicted and ground-truth cam-
era features.

5.2 Comparison to Baselines

We compare our model with baseline method of Jiang et al. [13]. To ensure a fair
comparison, we process our two-person motion sequences to exactly match Jiang
et al.’s input requirements: we keep the same frame rate and skeleton topology,
convert our keypoint data into the official ActionGraph encoding per-frame world
positions, orientation vectors, and velocity information for both characters, and
then feed this directly into their proposed Mixture-of-Experts (MoE) network.
The quantitative results in Table 1 demonstrate that our method substantially
outperforms the Jiang et al. baseline across all three evaluation metrics. We ob-
serve a significant reduction in Pose Distance Error, indicating more accurate
recovery of the camera’s spatial trajectory. Likewise, our FrameFID is dramati-
cally lower, reflecting greatly improved per-frame composition with consistently
well-centered subjects and minimal clipping. Finally, the considerable drop in
SeqFID confirms that our predicted camera motions are far smoother and more
temporally coherent than those produced by the baseline. Figure 5 provides
qualitative support for these findings by juxtaposing ground-truth frames (top
row), Jiang et al.’s outputs (middle row), and our predictions (bottom row)
across four representative interaction sequences. While the baseline often ex-
hibits abrupt viewpoint shifts, frame-to-frame jitter, and occasional loss of one
subject from the viewport, our method maintains stable, cinema-style framing
and fluid camera trajectories that closely follow the ground truth, even during
rapid movements and partial occlusions.
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Fig. 5. Qualitative comparison on four representative two-person interaction sequences.
Each column shows a temporal snapshot, with rows depicting (top) the ground-truth
camera view, (middle) the Example-Driven Camera baseline (Jiang et al.), and (bot-
tom) our method. While the baseline often produces abrupt viewpoint shifts and fram-
ing inconsistencies under rapid movements, our approach maintains smooth, stable
composition that closely follows the ground truth throughout each interaction.
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Table 1. Quantitative comparison of our model against the model proposed by Jiang
et al. Both are trained on our dataset.

Method PDE ↓ FrameFID ↓ SeqFID ↓
Jiang et al. 0.475 2.549 2.997
Ours 0.451 0.443 0.628

Table 2. Results of the ablation study, where one component is removed at one time
to test its importance.

Method PDE ↓ FrameFID ↓ SeqFID ↓
w/o Offset 0.644 1.128 2.377
w/o Att 0.473 0.443 0.850
Ours 0.451 0.368 0.628

5.3 Ablation Study

To validate the individual contributions of our cross-attention module and ex-
plicit spatial vector input, we conducted an ablation study with two variants:
one without cross-attention and one without spatial vectors. Table ?? reports
the ablation results. When the spatial offset input is removed (w/o Offset), all
three metrics degrade most severely: the PDE rises sharply and both FrameFID
and SeqFID worsen substantially, underscoring the critical role of explicit geo-
metric cues in maintaining framing accuracy and temporal coherence. Omitting
the cross-attention module (w/o Att) leads to a moderate drop in all metrics,
demonstrating its importance for modeling interactions between characters. By
contrast, our full model, which integrates both spatial offsets and cross-attention,
achieves the lowest PDE, FrameFID, and SeqFID, demonstrating that these
components work synergistically to produce precise, smooth, and cinema-style
camera motions.

6 Conclusion

In this paper, we have introduced a novel framework for predicting cinematic
camera motions directly from dual-character 3D motion data, without relying
on large pre-existing video corpora. Central to our approach is the integration
of cross-attention for modeling inter-character interactions and explicit spatial
vectors for encoding global geometry, all within a dual-stream Transformer archi-
tecture. We also contribute a new motions-camera dataset that tightly couples
professional camera trajectories with dynamic two-person interactions. Quanti-
tative evaluations against a strong Example-Driven Camera baseline and exten-
sive ablations demonstrate that our method produces more accurate, stable, and
visually coherent Toric camera trajectories. In future work, we plan to extend
this approach to multi-character scenarios, incorporate stylistic controls for finer



12 Cheng et al.

cinematographic effects, and explore real-time deployment in interactive virtual
environments.
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Abstract. Viscoelastic solids and granular materials have been exten-
sively studied in Classical Continuum Mechanics (CCM). However, CCM
faces inherent limitations when dealing with discontinuity problems. Peri-
dynamics, as a non-local continuum theory, provides a novel approach for
simulating complex material behavior. We propose a unified viscoelasto-
plastic simulation framework based on State-Based Peridynamics (SBPD)
which derives a time-dependent unified force density expression through
the introduction of the Prony model. Within SBPD, we integrate various
yield criteria and mapping strategies to support granular flow simulation,
and dynamically adjust material stiffness according to local density. Ad-
ditionally, we construct a multi-material coupling system incorporating
viscoelastic materials, granular flows, and rigid bodies, enhancing compu-
tational stability while expanding the diversity of simulation scenarios.
Experiments show that our method can effectively simulate relaxation,
creep, and hysteresis behaviors of viscoelastic solids, as well as flow and
accumulation phenomena of granular materials, all of which are very chal-
lenging to simulate with earlier methods. Furthermore, our method allows
flexible parameter adjustment to meet various simulation requirements.

Keywords: Peridynamics · Viscoelastic simulation · Granular materials
· Multi-material coupling.

1 Introduction

Viscoelastic solids and granular materials are ubiquitous in our daily lives and
industrial production. From kneading dough and biological soft tissues to natural
disasters like avalanches and mudflows, these materials demonstrate complex
dynamic characteristics. Accurate simulation of these behaviors is of great signif-
icance to fields such as materials science, geotechnical engineering, biomedical
simulation, and – last but not least – computer graphics.

Viscoelastic solids have time-dependent characteristics including stress re-
laxation, creep, and hysteresis. For large deformations, memory effects and non-
linearities further complicate the simulation. Granular materials consist of a
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large number of discrete particles and can exhibit both the shear resistance of
solids and the deformability of fluids. Recent advances in computational and
physical modeling techniques have made the accurate simulation of viscoelastic
and granular materials an active area of research in both computer graphics and
computational physics.

Early simulation methods used mesh-based discretization strategies such
as the Finite Element Method (FEM) [25] and described the time-dependent
behavior of viscoelastic materials by generalized Maxwell or Kelvin-Voigt models.
While widely used in structural mechanics, when handling fractures, separations,
and large deformations, such models encounter complex challenges when topology
changes and meshes need reconstruction. Mesh-free methods such as Smoothed
Particle Hydrodynamics (SPH), the Material Point Method (MPM), and Position-
Based Dynamics (PBD) compute physical interactions through particle-based
interactions and show clear advantages in handling fracture, large deformation,
and free surface flows. They can model a wide range of natural phenomena
and materials such as muscle [15], sand [7, 27], snow [19, 5], and multi-material
mixtures [21, 4].

However, most existing mesh-free methods still rely on CCM with foundations
in partial differential equations (PDEs). PDEs are not applicable at discontinuities,
e.g., cracks and interface slippage; additional techniques are needed to capture
such phenomena. The Peridynamics method [16] replaces differential with integral
equations to naturally handle material discontinuities. State-Based Peridynamics
(SBPD) [17] further expanded the range of constitutive models by introducing
the deformation state and force state concepts. While some viscoelastic and
elastoplastic models have been developed within the Peridynamics framework,
the potential for granular flow simulation and unified coupling with elastic bodies
remains underexplored.

In this paper, we propose a unified viscoelasto-plastic simulation framework
based on SPBD that supports both the time-dependent behavior of viscoelastic
solids and the yield-driven flow dynamics of granular materials, with the following
key contributions:

- We introduce the Prony model to an SPBD-bsed framework to derive time-
dependent force density expressions, accurately capturing relaxation, creep, and
hysteresis.

- We integrate various yield criteria and plastic mapping strategies within SBPD,
combine them with dynamic and static friction forces and density-based stiffness
adjustments, and achieve realistic granular flows.

- We create a multi-material coupling system supporting interactions between vis-
coelastic solids, granular materials, and rigid bodies. This improves computational
stability and significantly enriches the diversity of simulation scenarios.
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2 Related Work

2.1 Viscoelastic Simulation

Viscoelastic materials under external loads exhibit both only equilibrium elastic
responses and non-equilibrium viscous characteristics.

Terzopoulos and Fleischer [23, 22] pioneered the use of elastic models into
computer graphics and expanded them into three typical non-elastic behavior
simulations including viscoelasticity, plasticity, and fracture. Müller et al. [11]
introduced SPH into computer graphics, greatly promoting the application of
meshless methods in deformable body simulation. Takahashi et al. [20] proposed
an implicit SPH method for stable simulation of highly viscous fluids. Peer et
al. [14], by extracting rotation from the SPH deformation gradient, improved
the efficiency of elastic solid simulation nearly hundredfold. The MPM [19] is a
particle-grid hybrid method initially introduced to graphics primarily for snow
simulation, and subsequently extended to handle many materials and phase
transitions [24]. Yue et al. [26] used MPM to simulate shear-dependent dense
foams. Current research on viscoelasticity in computer graphics primarily focuses
on viscoelastic fluids and much less on viscoelastic solids. Fang et al. [3] proposed
a predictor-corrector algorithm that achieves viscoelastic and elastoplastic solid
simulation under large deformation conditions.

Peridynamics has attracted increasing interest due to its advantages in han-
dling material failure problems such as cutting and crack propagation [1]. Yet,
developing systematic viscoelastic models within a peridynamics framework re-
mains limited. Madenci et al. [10] proposed a viscoelastic constitutive model
based on ordinary state-based peridynamics, capturing material relaxation charac-
teristics under mechanical and thermal loads. Ozdemir et al. [13] further modeled
crack propagation in films based on this approach. Our method differs from theirs;
although also based on the Prony model, we have derived a unified force density
expression by combining it with a corotational elastic energy model.

2.2 Granular Flow Simulation

Continuum methods have been widely used in graphics to simulate granular mate-
rials. Zhu and Bridson [28] simulated sand through an improved PIC fluid solver.
Narain et al. [12] made key improvements to this method, effectively eliminating
cohesive artifacts related to incompressibility, significantly enhancing simulation
quality. Lenaerts and Dutre [9] implemented coupling interactions between water
and sand based on the SPH method. Daviet and Bertails-Descoubes [2] devel-
oped a MPM-based granular material model that behaves like a solid due to
internal friction, representing granular matter as a viscoplastic fluid combining
the Drucker-Prager yield criterion and unilateral compressibility constraints.
Tampubolon et al. [21] proposed a multi-phase MPM simulation of sand-water
mixtures, handling fluid permeation and interaction in sand via porous media
theory.
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Compared to SPH and MPM methods, Peridynamics-based simulation of
granular materials is an emerging research direction with great potential. In
structural mechanics, Peridynamics is commonly used to simulate the fracture
of geotechnical materials under loading [8]. However, current research on Peri-
dynamics for simulating granular flows remains relatively limited, particularly
lacking a framework that unifies viscoelastic response with granular plastic flow.

3 SBPD Theory

State-based Peridynamics (SBPD) is a reformulation of continuum mechanics.
Unlike bond-based peridynamics, which models particle interactions as springs,
SBPD defines interactions through the relation between a particle and its neigh-
borhood. This allows for asymmetric forces and the modeling of more complex
material behavior.

Let H denote a spherical neighborhood of radius r and center xi. Let Lm

denote the space of order-m tensors. An order-m state is a mapping A⟨ξ⟩ : H →
Lm, where ξ = xj − xi, ξ ∈ H is the so-called bond vector between particle xi

and its neighbor xj . Let y = φ(x) denote a deformation under a motion φ. The
corresponding reference and deformation vector states (see Fig. 1) are defined as
X⟨ξ⟩ = xj − xi and Y⟨ξ⟩ = yj − yi.

Classical continuum mechanics defines the deformation gradient as F(x) =
∂y/∂x. Yet, this partial derivative does not exist at discontinuities. To overcome
this, Peridynamics approximates F using a least-squares minimization over H as
F = (Y ∗X) (X ∗X)

−1 with the generalized tensor product defined by

A ∗B =

∫
H
w(ξ)A⟨ξ⟩ ⊗B⟨ξ⟩ dξ, (1)

where w(ξ) is a weight function and ⊗ denotes the dyadic product.
The motion of particle i is governed by the balance of linear momentum in

integral form

ρiai =

∫
H
(Ti⟨ξ⟩ −Tj⟨−ξ⟩) dξ + g, (2)

where ρi is the density of particle i, ai is its acceleration, g is the external body
force, and the state function T models internal forces.

4 Viscoelastic Constitutive Model

We extend the classical elastic SBPD framework to incorporate viscoelastic
behavior using a Prony-series-based energy model. Our approach captures time-
dependent effects such as creep, relaxation, and hysteresis through control param-
eters. We implement our approach in a discrete numerical form that is compatible
with particle-based simulations.



Peridynamics-Based Simulation of Viscoelastic Solids and Granular Materials 5

Fig. 1: Deformation state mapping.

The Prony model [18] is a widely used linear viscoelastic constitutive model
which models the material’s stress response σ as a sum of exponentially decaying
functions via

σ(t) = E∞ · ε(t) +
N∑

k=1

Ek · e−t/θk · ε(t), (3)

where ε is strain, N is the approximation order, E∞ is the steady-state modulus,
and Ek and θk are the relaxation modulus and relaxation time of the k-th mode,
respectively.

To implement this model numerically, we discretize time and introduce vari-
ables qk to capture the memory effect associated with each mode. These variables
are updated over time as

qn+1
k = αk · qnk + (1− αk) · εn+1, (4)

where αk = e−∆t/θk . Each qk term gives the contribution of a specific relaxation
mode and decays exponentially over time. This yields the stress update rule

σn+1 = E∞ · εn+1 +

N∑
k=1

Ek ·
(
εn+1 − qn+1

k

)
. (5)

Similar to the projected Peridynamics elastic model of by He et al. [6], we use
a linear co-rotational elastic energy model to simulate the hyperelastic body and
decompose it into a deviatoric part Wdev and an isotropic part W iso

Ψ =

∫
H
w⟨ξ⟩

(
µWdev⟨ξ⟩+ λ

2
W iso⟨ξ⟩

)
dξ, (6)

where µ and λ are the first and the second Lamé parameters, respectively.
Assuming that all particles in H share the same deformation gradient F, the
ideal deformation tensor state can be expressed as Ŷ = Fξ. Wdev is the energy
of shear deformation and W iso is the energy of volume deformation, which are
defined as

Wdev = (|Ŷ|/|X| − 1)2,

W iso = (|Y|/|X| − 1)
2
.

(7)
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When the horizon H is small and the deformation field is smooth, Ŷ ≈ Y.
For each relaxation mode, we can now express the time evolution of the energy

via our internal history variables as

Ψdev
i,j = µ∞Wdev

i,j +

N∑
k=1

µk

(
Wdev

i,j − qdev,k
i,j

)
,

Ψ iso
i,j =

λ∞

2
W iso

i,j +

N∑
k=1

λk

2

(
W iso

i,j − qiso,k
i,j

)
,

(8)

where, following (4), we have that

qdev,k,n+1
i,j = αkq

dev,k,n
i,j + (1− αk)Wdev,n

i,j ,

qiso,k,n+1
i,j = αkq

iso,k,n
i,j + (1− αk)W iso,n

i,j .
(9)

The deviatoric force density is expressed as

Tdev
ij =

2w(ξ)γdev

|X|2
(|Y| − |X|)dir(Ŷ), with

γdev = µ∞ +
∑
k

µk

(
1−

qdev,k
i,j

Wdev
i,j

)
.

(10)

Similarly, the isochoric force density is given by

Tiso
ij =

w(ξ)γiso

|X|2
(|Y| − |X|)dir(Y), with

γiso = λ∞ +
∑
k

λk

(
1−

qiso,k
i,j

W iso
i,j

)
.

(11)

In the above, γ is the effective modulus, i.e., the effective stiffness of the deviatoric
and isotropic components of the material at the current moment t. Using (10)
and (11), we get the total force density Tij = Tdev

ij +Tiso
ij . Finally, we derive the

discrete form of the equation of motion

ρiai = h2
∑
j∈H

(Tij(ξ)−Tji(−ξ))Vj . (12)

5 Granular Material Simulation

Granular materials such as sand and snow often exhibit discrete elastoplastic
behavior in the framework of continuum mechanics. We propose a peridynamics-
based simulation method for granular flows under different yield criteria. We
adopt the unified yield criterion proposed by Tu et al. [24] and implement three
projection strategies for plastic mapping. Additionally, we dynamically update
the Lamé parameters based on particle density to correct particle positions and
enhance simulation stability.
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5.1 Modeling yield for different materials

When a particle’s internal stress state reaches the yield condition, irreversible
plastic deformation occurs. We define a yield surface by the condition y(τ ) ≤ 0,
where τ is the Kirchhoff stress tensor. If y(τ ) > 0, stress must be projected back
to the yield surface, and the excess stress is interpreted as plastic flow. To define
y, we first decompose the stress tensor τ into

s = dev(τ ), p = −1

d
tr(τ ), q =

√
6− d

2
∥s∥, (13)

where d ∈ {2, 3} is the spatial dimension, s is the deviatoric stress tensor, the
hydrostatic pressure p gives the compression or expansion of the volume, and the
equivalent shear stress q gives the intensity of s.
Granular materials and fluids: We model these by the Drucker–Prager yield
criterion

yvmdp = Cf tr(τ ) + ∥s∥ − Cc = 0, (14)

where Cf is the friction coefficient related to the friction angle, and Cc controls
the intercept of the yield surface. When Cf = 0, the model degenerates into the
Von Mises criterion, indicating purely shear-dominated yielding.
Clay and soil materials: We model these (under compressive loading) by the
Cam-Clay yield criterion given by

yvmcc(p, q) = C2
fp

2 + q2 − C2
c = 0, (15)

where Cf and Cc have similar meanings as in the Drucker–Prager model. Cc is the
radius of the yield surface and is used to control hardening/softening behavior.

5.2 Plasticity mapping strategy

We simulate plastic deformation of granular materials such as sand or snow
by implementing a plasticity mapping strategy within the SBPD framework.
We use a classical ‘return mapping’ algorithm where plasticity is evolved by
an elastic predictor step followed by a plastic corrector step: In the prediction
step, plastic flow is temporarily ignored and stress and internal variables are
updated elastically, yielding a trial deformation gradient Ftr. If the yield surface
is exceeded, we enter the plastic correction step and project stress back to the
yield surface.

To incorporate plastic flow, we compute the elastic left Cauchy-Green defor-
mation tensor as

btr = Ftr
e Ftr

e
T
. (16)

Assuming a purely elastic response, the Kirchhoff stress tensor can be defined
using a Neo-Hookean model as

str = µJ−2/d

(
btr − 1

d
tr(btr)I

)
,

τ tr = str +
λ

2
(J2 − 1)I,

(17)
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where J = det(Ftr) is the volumetric change. The tensor str captures shear
response, while τ tr includes both volumetric and deviatoric effects.

We classify the return mapping into three cases (denoted A–C below) depend-
ing on the relation between the stress state and the yield limit τmax = Cc/Cf .

Case A: If y(τ tr) ≤ 0, stress lies inside the yield surface, thus Fn+1
p = Ftr.

Case B: If | tr(τ tr)| > τmax, the particle reaches the yield surface, setting
τn+1 = τ tip. We update the principal stretch isotropically as

Jn+1 =

√
2

dλ
| tr(τ tip)|+ 1,

Σn+1 = (Jn+1)1/d · I,
(18)

and compute the plastic deformation gradient using singular value decomposition

Fn+1
p = UΣn+1VT . (19)

This process represents the direct projection of stress to the yield apex under
isochoric stretching, avoiding further decomposition in shear direction.

Case C: If y(τ tr) > 0 but the tip condition is not met, we perform a
projection of the deviatoric stress norm. For the Drucker–Prager yield criterion,
this becomes

∥sn+1∥ = ∥str∥ − yvmdp(τ
tr). (20)

For the Cam–Clay case, this becomes

∥sn+1∥ =

√
∥str∥2 − 2yvmcc(τ tr)

6− d
. (21)

The deviatoric direction is preserved, and the updated stress is used to
reconstruct the Cauchy-Green tensor:

sn+1 = ∥sn+1∥ · str

∥str∥
,

bn+1 =
sn+1

µJ−2/d
+

1

d
tr(b)I.

(22)

The corrected plastic deformation gradient becomes

Fn+1
p = Udiag(

√
bn+1)VT . (23)

5.3 Dynamic adjustment of stiffness

In granular flow simulation, we no longer use fixed Lamé parameters, but instead
update these adaptively based on local material compaction. Drawing from snow
material handling methods in MPM [19], we estimate elastic response changes
based on the particle’s current compression density. We compute the local density
as

ρi =
∑
j

mjW (xi − xj , h), (24)
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where W is a kernel function with support radius h. The local density reflects
the current compression level of the material, and the rest density reads ρt0,i =

ρti
∣∣det(Ft

e,i)
∣∣.

Using the ratio of this rest density to the initial density, we dynamically
adjust the current Lamé parameters as

λt
i =

Eν

(1 + ν)(1− 2ν)
exp

(
ξ ·

ρt0,i − ρ0

ρt0,i

)
,

µt
i =

E

2(1 + ν)
exp

(
ξ ·

ρt0,i − ρ0

ρt0,i

)
.

(25)

This can be seen as a compression rate driven exponential hardening rule, which
effectively enhances the response stiffness of materials such as snow in compacted
states.

6 Boundary Handling

In the overall coupling of viscoelastic materials, granular flow materials, and rigid
body boundaries, boundary collision mechanisms strongly influence simulation
stability and realism. We introduce a boundary handling method using Sparse
Signed Distance Fields (SDF) which improves stability and physical fidelity.

We directly sample and store SDF information on each rigid boundary particle,
where each particle maintains a signed distance value ϕ and its gradient ∇ϕ,
representing the shortest distance to the boundary and its direction, respectively.
This design allows particle-to-particle collision detection and avoids repeated
grid-based sampling. Collisions are triggered when the distance between particles
is below a threshold ∥xi − xj∥ < r, or when |ϕ| < r for boundary contact.

Upon collision, particles are displaced along the contact normal direction with
penetration depth d = min(|ϕi|, |ϕj |) and mass-based weighting. The contact
normal is approximated by the gradient of the closer particle’s SDF. For example,
the position correction for particle i is given by:

∆xi = − wi

wi + wj
(d · nij),

∆xj =
wj

wi + wj
(d · nij),

(26)

where wi = 1/mi.
To resolve sliding or sticking effects at boundaries, we introduce both dynamic

and static friction models, as follows.
Dynamic friction: During particle-boundary contact, we compute the change
in velocity due to collision ∆vi = vn+1

i − v∗
i , where vn+1

i is the post-collision
velocity and v∗

i is the elastic response velocity. We compute the tangential velocity
as

vit = vn+1
i − nvin, vin = n · vn+1

i . (27)
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With j = mi∆vi the impulse, the friction constraint reads ∥ft∥ ≤ cb∥j∥. When
the friction force can completely eliminate the tangential velocity, the velocity
correction is simply vn+1

i = nvin. Otherwise we set

vn+1
i = v∗

i −
cb
mi

∥j∥ vit

∥vit∥
, (28)

where cb is the dynamic friction coefficient.
Static friction: To prevent persistent sliding near boundaries and simulate
stacking behavior, we find stationary particles using a geometric criterion: If the
motion of particle i satisfies

(yt+1
i − y∗

i ) · (yt
i − y∗

i ) ≥ η∥y∗
i − yt

i∥2, (29)

we freeze its position, i.e., set yt+1
i = yt

i . η is the static friction coefficient, set to
η = 0.8 in our simulations.

7 Results and Discussion

We implemented our framework on an NVIDIA GeForce RTX 4090 GPU using
the Taichi programming language for efficient parallel simulation. The overall sim-
ulation procedure is outlined in Algorithm 1, where we typically set the maximum
number of iterations itermax to 5, and terminate early if the maximum iteration
displacement falls below a predefined threshold ϵ = 10−4. All visual results were
rendered offline via Houdini. Detailed simulation performance information is
given in Table 1.

Table 1: Simulation information for selected examples. P is the number of
particles.

Exp. P ∆t FPS E0 ν

Fig. 2 80k 5 ms 68.67 1× 108 0.45
Fig. 3 195k 2 ms 27.20 1× 107 0.45
Fig. 4 348k 2 ms 13.19 3× 105 0.20
Fig. 5 95k 5 ms 17.06 2× 105 0.20
Fig. 6 167k 2 ms 7.56 2× 105 0.20

Fig. 7 416k 1 ms 8.80 1× 107 (elast.) 0.25
2× 105 (sand) 0.20

Viscoelastic stretch: We validate our algorithm using a N = 3 (rd) order
Prony model. The total Young’s modulus E0 gives the initial stiffness of the
material, while the long-term modulus E∞ characterizes its stiffness at infinite
time. Each Ek denotes the relaxation modulus of the k-th component, with θk
being the corresponding relaxation time. The material behavior is defined using
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Algorithm 1 Elastomer-Sand Coupling Simulation Based on SBPD
1: Input: yt,vt, phase, ∆t, itermax, E0, ν, E∞, Ek, θk, Cf , Cc, η, ϵ
2: Particle advection: yt+1 ← yt + vt∆t
3: while iteration < itermax and max (∥∆xi∥) > ϵ do
4: // Elastic Phase:
5: Compute deformation gradient F
6: Compute force density T (Eq. (10), (11))
7: Compute displacement ∆x (Eq. (12))
8: Update position: yt+1 ← yt+1 +∆x
9: // Sand Phase:

10: Compute deformation gradient F
11: Project F onto yield surface (Cases A/B/C)
12: Compute force density T
13: Compute displacement ∆x (Eq. (12))
14: Update position: yt+1 ← yt+1 +∆x
15: end while
16: // Constraints and Collisions:
17: while iteration < itermax do
18: Apply self and inter-phase collision response (Eq. (26))
19: Apply boundary advection
20: end while
21: // Post-processing:
22: Update velocity: vt+1 ←

(
yt+1 − yt

)
/∆t

23: Apply static friction constraint
24: Apply dynamic friction constraint
25: Update neighbor list j
26: Update Lamé parameters (Eq. (25))

the empirical relation: E0 = E∞+
∑N

k=1 Ek. The configuration of relaxation times
at each order can be determined according to the empirical rules of exponential
decay.

Figure 2 shows a stretching–unloading experiment that compares the re-
laxation behavior of hyperelastic, viscoelastic, and elastoplastic materials after
external force removal. The hyperelastic model was configured with E0 = E∞ and
recovered quickly upon unloading, with almost no energy dissipation. For the vis-
coelastic model, we set E∞ = 0.4E0, Ek = [0.3, 0.2, 0.1]·E0, and θk = [0.1, 1.0, 5.0].
The recovery behavior showed exponential time-decay characteristics (see the
supplemental video). The elastoplastic model with Von Mises yield criterion
showed significant energy dissipation and permanent deformation.

We further illustrate the flexibility of our viscoelastic model by an “armadillo
stretch-rest-unload” experiment with E0 = 1× 107 and ν = 0.45. We compared
three different viscoelastic material parameters:

– Purely elastic: E∞ = E0;
– High viscosity: E∞ = 0.3E0, Ek = [0.3, 0.2, 0.2] · E0, θk = [0.5, 2.0, 5.0];
– Low viscosity: E∞ = 0.5E0, Ek = [0.25, 0.15, 0.1] · E0, θk = [0.5, 2.0, 5.0].
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(a) Stretch-release process of pure elastic body [6]

(b) Stretch-release process of viscoelastic body

(c) Stretch-release process of elastoplastic body

Fig. 2: Comparison of recovery behavior of different materials during the stretch-
release process.

Figure 3 shows the evolution of energy (in red) throughout the simulation and
presents a quantitative analysis. During the stretching phase, the total energy of
all three materials increases non-linearly due to the work done by external forces,
consistent with the non-linear characteristics of stress-strain relationships. For
the purely elastic material, the external work is entirely converted into elastic
potential energy, whereas for viscoelastic materials, a portion of the energy is
dissipated through viscous effects. In the constant-stretching phase, the energy of
the elastic material remains unchanged, while the viscoelastic materials exhibit
stress relaxation, demonstrating the physical plausibility of our model. In the
relaxation phase, the purely elastic material released energy most rapidly and
almost completely returned to its original state. Highly viscous materials release
energy more slowly, showing significant hysteresis effects as part of the energy is
converted to heat through viscous mechanisms. The energy release rate of the
low-viscosity elastic material lies between the two. These results demonstrate
the effectiveness of our viscoelastic model and its strong tunability in capturing
diverse material responses.
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Fig. 3: Energy evolution of the armadillo stretching experiments.

Sand simulation: We designed a series of granular flow experiments and com-
pared them with MPM simulations based on the Drucker–Prager yield criterion.
These comparisons validate the effectiveness of different yield mapping schemes
under the peridynamic framework in reproducing physically plausible granular
flow and pile-up behaviors.

Figure 4 shows a sand pile experiment with E0 = 3× 105 and ν = 0.2. Under
high friction coefficients, our method successfully produced stable, high-friction
sandpiles in which the upper particles resisted sliding. Compared to the MPM
approach under the same friction angle and coefficient, our method achieved more
pronounced pile-up effects by introducing stronger cohesive forces. Additionally,
the peridynamics framework, extended from elastic energy, allows for larger time
steps, improving overall simulation efficiency.

To further study the influence of cohesion, we conducted a slope-divided
sand pile experiment (Fig. 5). We used the Drucker-Prager yield criterion with
E0 = 2× 105 and ν = 0.2, and used materials with different cohesion coefficients.
Under higher cohesion, some sand particles could adhere to the inclined surface
forming local accumulations. For lower cohesion, only a thin layer of particles
remained, with the rest quickly sliding down. The accumulation patterns on the
ground also showed significant differences: high-cohesion materials formed more
compact sand pile structures; low-cohesion materials appeared more dispersed.

To evaluate the influence of friction coefficients on granular flow behavior and
accumulation patterns, we conducted an hourglass experiment under constant
cohesion (Fig. 6). The results show that higher friction coefficients yield in poorer
flow of particles near boundaries, while internal particles still show a certain flow.
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(a) Sand piling based on MPM [7]

(b) Sand piling under high friction coefficient

(c) Sand piling under high cohesion coefficient

Fig. 4: Sand piling simulation experiments.

In contrast, materials with low friction exhibited more uniform flow between
interior and exterior regions. After exiting the funnel, high-friction materials
formed taller and steeper piles with an angle of repose measuring 30.61◦, while
low-friction materials produced flatter deposits with an angle of repose of 20.80◦.

Coupling simulation: To validate the multi-material coupling capability of our
framework, we performed an experiment involving viscoelastic bunnies interacting
with bunny-shaped sand (Fig. 7). The viscoelastic material has E0 = 1 × 107,
ν = 0.25. Sand particles have E0 = 2 × 105, ν = 0.2. During free fall, the
viscoelastic bunnies undergo deformation upon impact, while sand flows into
the gaps between them and forms a stable pile. The experiment shows realistic
two-way coupling, where both material types influence each other’s behavior
under collision and accumulation.

8 Conclusions and Future Work

We proposed a unified visco-elasto-plastic simulation framework based on SBPD
to address the limitations of CCM in modeling discontinuities. Our framework
demonstrates flexibility and effectiveness in simulating both viscoelastic solids
and granular materials.

In terms of viscoelastic simulation, we derived time-dependent force density
formulations based on the Prony model, accurately capturing complex response
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(a) Cohesion coefficient Cc = 1

(b) Cohesion coefficient Cc = 100

Fig. 5: Sand-slope experiments.

characteristics such as stress relaxation, creep, and hysteresis. For granular
flow simulation, we integrated various yield criteria and mapping strategies,
combined with density-based dynamic stiffness adjustment mechanisms, achieving
natural flow, accumulation, and separation behaviors of particles. The framework
further supports interactions among viscoelastic solids, granular media, and rigid
bodies via a multi-material coupling mechanism, enhancing its robustness and
applicability.

However, the computational efficiency of the current method for large-scale
granular flow simulations still remains a challenge. In future work, we will focus
on developing implicit iterative acceleration strategies to enhance the stability
and efficiency of large-scale computations. Furthermore, we plan to leverage
the advantages of Peridynamics in handling fracture and crack propagation
by incorporating fracture mechanics mechanisms into the viscoelastic model,
enabling the simulation of richer material discontinuity behaviors. Building on
the extensibility of our framework, we will also integrate viscoelastic fluids into
the unified framework, extending its application capabilities in biological fluid
and soft matter simulations.
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(a) Friction coefficient Cf = 0.1

(b) Friction coefficient Cf = 2

Fig. 6: Hourglass experiments.

Fig. 7: Viscoelastic bunny and sand coupling experiment.
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Abstract. With the development of virtual reality technology, serious games

have become a new type of teaching tool, and exploring the differences in their

sense of immersion is of great significance in enhancing user experience and

promoting personalized education. In this study, we designed three educational-

themed serious games and compared the power spectral densities (PSD) of

immersion-related brain waves of children of different ages by using a

difference analysis algorithm based on the game test model. The results showed

that the PSDs of theta, alpha, and beta waves differed significantly in different

age groups; in the tutor-guided experiment, only theta wave differed

significantly. The younger group had higher levels of θ-wave and α-wave

activity, and were more relaxed and creative during the game; the older children

had higher levels of β-wave activity, and had better attention and cognitive

level during the game. This study reveals the influence of age on children's

cognitive and emotional participation in educational games from a

neurophysiological point of view, and provides a neuroscientific basis for the

development of personalized educational tools.

Keywords: VR education, serious game, EEG, immersion.

1 Introduction

Serious games have gained widespread adoption in educational settings for school-

age children, as they bolster the quality of the learning experience and academic

performance. They offer a platform for knowledge exchange, collaborative learning,

and social interaction [1-3]. When integrated with traditional educational resources,

serious games offer unique visualization and interaction prospects [4], maintaining a

high level of motivation, which, in turn, augments the overall learning experience [5-

6].

Successful serious games share a common trait: their capacity to engross players in

an immersive experience. This phenomenon is commonly referred to as “immersion.”

To delve into the determinants of immersion, Brown et al. [7] conducted a qualitative

study, confirming immersion as a descriptor of a player's engagement level in a game.

The greater the engagement, the deeper the immersion, and correspondingly, the

player's emotional responses are profoundly influenced by the game's immersive
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qualities, immersive environments lead to more positive emotions. Numerous studies

emphasize the potential of serious games to augment learning by boosting motivation,

thus leading to enhanced learning outcomes [8]. Barclay et. al. [9] established a

correlation between immersion and improved learning outcomes. Beyond its

educational benefits, serious games serve as potent motivators in student education

[10] while fostering the development of cognitive skills such as problem-solving,

creativity, and critical thinking [11].These advantages extend even to students prone

to inattention [12].Moreover, serious games facilitate the acquisition of skills

including discovery-based learning [13],motor skills, spatial coordination [14],and

expertise development [15].Serious game affected positively the children’s basic

learning mechanisms (BLMs), by reinforcing balance, visual-motor, memory,

attention, and spatial awareness abilities while interacting with the serious game.[16].

Despite the availability of AI tools [17] and game design frameworks tailored to

serious game design [18-19], these resources remain insufficient in offering

comprehensive guidance for the incorporation of immersion elements into serious

games. In addition, there exists a paucity of in-depth studies concerning the variability

of physiological markers of immersion in serious games for school-aged children,

who constitute the primary demographic of serious game users.

This study combines neuroscience and education to investigate school-aged

children's immersion in serious games. Part 1 presents the research background and

objectives. Part 2 reviews relevant literature, focusing on correlation studies. Part 3

details the experimental design, covering the differential analysis algorithm based on

the proposed serious game test model, EEG data collection methods, and game

design. Part 4 describes the experimental procedures and data processing. Part 5

discusses the results, and Part 6 concludes the study.

2 Related Work

Serious games are experiencing rapid growth and are extensively employed in

children's education. Cheng et al. [20] discovered a significant correlation between

learning outcomes in educational games and the subjective experience of immersion.

Achieving a balance between the effectiveness of serious games and the enjoyment of

the experience poses a challenging task in contemporary game design. Investigating

the emotional dynamics of players in the game environment has been proposed as an

effective solution.

Barclay and Bowers [21] observed that the benefits of immersion in serious

educational games are no longer solely attributable to highly available systems or

exceptionally receptive learners. While some studies have applied game design

principles to the educational process in serious games, there remains still a significant

absence of systematic and empirically tested design methodologies [22]. Additionally,

research has explored the variability in experiential perception and acceptance across

different age groups in the context of serious gaming experiences. For instance, some

researchers [23] assessed the performance and subjective experiences of three age

groups in serious gaming, revealing significant differences in re-gaming experiences
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and processing speed among these age groups. Chiang et al. [24] created an EEG-

based model to objectively gauge attention and learning capacities. Moreover, Wan et

al. conducted an assessment of immersive learning in university students, providing

evidence supporting the feasibility of predicting the level of learning immersion

through physiological recordings.

The study focused on the child population's cognitive abilities, attention, and

expression. Due to the unsuitability of children for questionnaire participation,

subjective evaluations of the children were not collected. To ensure an accurate and

objective assessment, brainwaves were utilized to physiologically measure the

participants' brain activity. Previous research by scholars has assessed the brainwaves

of individuals engaged in serious games. Alpha waves (18-12 Hz) are known to play a

significant role in various sensory and cognitive processes and exhibit a negative

correlation with attention [25]and cortical activation [26]. Beta band oscillations (15-

30 Hz) have been proposed as indicators of cognitive processing, particularly in the

upper part of the beta band. Theta EEG bands (4-7 Hz) have been linked to memory

and cognitive abilities. In a study conducted by Škola et al. [27] on presence,

engagement, and immersion in virtual reality, it was found that the total duration of a

VR application was inversely related to technology adoption and negatively

correlated with immersion. This suggests a negative association between the duration

of VR application and the levels of presence, engagement, and immersion in virtual

reality. These findings emphasize the potential of EEG as a viable and objective

method for assessing immersion [28]. In terms of brainwave frequencies, alpha waves

are consistently recorded and are sensitive to changes in task difficulty. They are the

dominant waves in human EEG brain recordings in the range of 7.5-13.5 Hz. The

evaluation of immersion comprises various aspects, including perception, control,

attention, enjoyment, and self-awareness [29-32]. Indicators of immersion in different

brain waves are shown in Fig. 1.

Fig. 1. Indicators of immersion in different brain waves

In summary, numerous studies have highlighted the benefits of serious games in

enhancing children's learning abilities and immersive learning experiences. However,

there remains a significant gap in research when it comes to understanding the

differences in immersion at the physiological level in serious educational games. This
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gap is primarily due to differences in cognitive development, emotional responses,

and levels of concentration among children of various age groups. There is a clear

need for more comprehensive analyses into EEG indicators of immersion. To address

this need, this study has developed a disparity analysis algorithm based on a serious

game testing model. The primary objective is to verify the differences in immersion

levels experienced by children of different age groups while engaging with serious

educational games. To achieve this objective, we have designed three serious

educational games with educational themes, which will be utilized to assess the

participating children.

3 Research Design

3.1 Design of Variance Analysis Algorithm Based on Serious Game Testing

Models

To investigate differences in the level of immersion among children of varying ages

when engaging with serious games, a Variance Analysis algorithm is proposed,

utilizing the Serious Game Test model. In this analytical framework, age serves as the

primary independent variable. Employing the Serious Game Test model enables us to

identify differences not only between different age groups but also in each age group.

Our study categorizes children into high and low age groups, with their data

hierarchically nested. Failing to acknowledge this nested relationship and conducting

a simple comparison might result in an oversight of the relationship between

individual and group data, leading to imprecise difference estimations. To address

these potential issues, our proposed model, grounded in serious game testing, adeptly

tackles the matter. It not only scrutinizes differences between groups but also within

them, while also controlling for potential interfering factors.

The Variability Analysis algorithm, rooted in the Serious Play Test model,

evaluates the variability in mean EEG signals during serious play among children.

The inferences drawn from this analysis are based on certain assumptions. Before

performing the Variability Analysis, it is necessary to subject the mean power values

of the EEG signals, obtained from processing, to normality and chi-square tests.H0

represents the null hypothesis, signifying the assumption that no effect or difference

exists in the overall parameters or distribution. In the context of analysis of variance,

H0 posits that no difference exists. On the contrary, H1 signifies the alternative

hypothesis, representing the opposite of the null hypothesis, often suggesting the

presence of a difference. Prior to the analysis of variance, normality and chi-square

tests are conducted, establishing hypothesis tests using both H0 and H1.

The statistical D-value is employed for making inferences and evaluating the

significance of differences. This statistic compares differences between groups with

differences in groups. In the framework of analysis of variance, a comparison is

necessary between between-group differences, which reflect differences in group

means, and in-group differences, which indicate the degree of variability in

observations of each group. D-values are computed by contrasting between-group

variance with in-group variance to measure the magnitude of between-group
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differences relative to in-group variance. Therefore, larger D-values indicate a

significantly greater between-group variance compared to in-group variance, and vice

versa. At the conclusion of the D-value analysis, it becomes essential to determine the

criticality and make a statistical decision. Criticality pertains to the reference value

employed in analysis of variance to determine the significance of the D-value.

Statistical software, such as SPSS, is utilized to establish criticality and reach a

statistical decision. To gain a comprehensive understanding of discrepancies in EEG

metrics among children, taking into account EEG data's complexity and noise,

repeated comparisons are conducted. This approach yields more exhaustive,

profound, and stable findings. The following is the procedural outline:

(1) Statistical D-value

Means were calculated first: it represents the sample mean and the total mean for

the ith overall level, with ni representing the number of sample observations for the

ith overall level. Sum of Squared Errors: Calculate the sum of squared errors, which

comprises the between-group sum of squares (Sa). Sa reflects the extent of difference

between sample means of the overall levels and indicates the impact of differences in

theoretical means of factor A. This is labeled as “the sum of squares of factor A” or

“between-group difference.”

In-Group Sum of Squares: it represents the in-group sum of squares (Se). Se is the

sum of squared errors between the sample data of each group and its group mean,

illustrating the dispersion of each observation in each sample and denoting the effect

of random errors. It is referred to as “sum of squares of errors” or “in-group

variance”.

Total error sum of squares St: it represents the sum of the squares of errors across

all observations and the overall mean, serving as an indicator of the dispersion among

all observations. The between-group and in-group mean squares are obtained by

dividing the sum of squared errors by their respective degrees of freedom. The

Ma/Me ratio forms the basis of the D distribution.

(2) Critical value is determined and statistical decisions are made

After calculating the D statistic, one should locate the corresponding critical value,

Alpha, in the D distribution table. This is achieved for a numerator with degrees of

freedom of (k-1) and a denominator with degrees of freedom of n-k, according to the

given significance level, Alpha.

When the value of D is greater than the critical D value, it is indicative of rejecting

the null hypothesis in favor of the alternative hypothesis, supported by our data.

When the value of D is less than the critical D value, it is not advisable to conclude

the acceptance of the null hypothesis. Instead, it is more appropriate to state that the

null hypothesis was not rejected.

(3) Multiple comparisons

The difference between individual EEG indicator point estimates plays a role in

reinforcing the conclusion mentioned above. If this difference is not sufficient to be

practically significant, it further emphasizes that any existing differences between

levels, if present, hold limited practical importance.

Should the difference in mean values between different levels reach a level of

significance from an applied perspective, the original hypothesis H0 is accepted due
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to the significant effect of random error. Conversely, if this value is considered

excessively large from an applied standpoint, it suggests that the present test lacks

precision. In such cases, it is advisable to consider increasing the test size and

improving the test to minimize the effect of random errors.

(4) Algorithm design

The sum of squares between age groups, denoted as Sa, is the sum of the squares of

errors between the group means and the overall mean. This reflects the extent of

difference among the sample means at each level of aggregation and signifies the

effect of differences in the theoretical mean at each level of Factor A. It is also

referred to as the “sum of squares of Factor A” or the “between-group difference.”

The calculation process of Sa is shown in Formulate.1.

Sa =

i=1

k

ni(xi − xധ)2

(1)

On the other hand, the in-group sum of squares, Se, comprises the sum of the

squares of errors in the sample data of each group and its respective group mean. This

reflects the dispersion of each observation in each sample and indicates the effect of

random errors. It is denoted as the “sum of squares of errors” or “in-group variation.”

The calculation process of Se is shown in Formulate.2.

�� =

�=1

�

�=1
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The total error sum of squares, St = Se+ Sa, represents the sum of the squares of

errors across all observations and the overall mean, reflecting the dispersion among

all observations. The calculation process of St and D-value are shown in Formulate.3

and 4.
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3.2 Design of Spectral Analysis

In this study, spectral features of electroencephalogram (EEG) signals are derived

from four frequency bands: delta (0-3.5 Hz), theta (3.5-7.5 Hz), alpha (7.5-13.5 Hz),

and beta (13.5-26 Hz). Given that EEG signals exhibit non-stationary characteristics

over short periods, the Discrete Wavelet Transform (DWT) is adopted for feature

extraction, as it outperforms the Fast Fourier Transform (FFT) in this context [32].

DWT utilizes scale and wavelet functions associated with low-pass and high-pass

filters respectively. By passing the original signal X[n] through these filters and

applying the Nyquist sampling rule to discard half of the samples, the signal is
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decomposed into different frequency bands. This subband coding process can be

iterated, reducing time resolution by half while doubling the frequency resolution at

each level, enabling detailed analysis of the signal across various resolutions and

frequency bands.

Raw EEG data captured by the EEG device often contains artifacts from muscle

activity, eye movements, and heart rate variability. To address this, BESA software is

employed to remove these artifacts, yielding task-relevant raw signals. Subsequently,

the targeted EEG waves are accurately extracted for further analysis.

3.3 Serious Game Design

We designed three serious games for elementary school age children. Among them,

“Jing Ke Stabbing Qin” and “Grass Boat Borrowing Arrows” are inspired by Chinese

culture, and “The Crow and the Water Jar” is inspired by Aesop's fables. The game is

based on the story of Zhuge Liang's borrowing of arrows, in which the player has to

control a thatched boat to collect 300 arrows and avoid bombs. The game adopts a

cartoon interface, and is set up with three types of weather to increase the difficulty:

sunny, rainy, and foggy, with gestures required to control the game in rainy and foggy

days. Jing Ke Qin” reproduces the plot of Jing Ke's assassination of Qin by

manipulating the shadow characters and utilizing five control points and depth sensors

to complete the game. In “The Crow and the Water Jar”, children have to use gestures

to manipulate the puppet crow to pick up pebbles and put them into the water jar, and

the game process provides feedback to assist in the measurement of EEG metrics. The

games involved are shown in Fig. 2.

In each game, two modes of experience were set up, the lower age group was

guided by an adult tutor, and the upper age group completed the game independently,

in order to explore the differences in brain waves between the guided and unguided

brain waves of different age groups, to understand the electroencephalographic

mechanism of game immersion, and to compare the immersion indexes of the two

groups, to explore the relationship between age and immersion.

Fig. 2. Serious game design
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4 Materials and Methods

4.1 Participants

The participants were 64 children of different school ages. According to the age

division of primary school-aged children classified by the Ministry of Education of

the People's Republic of China, our recruitment interval was set at 6-11 years old, and

the participants were divided into a high age group (Group H) and a low age group

(Group L) according to their age, with Group H's age range being 6-8 years old and

Group L's age range being 9-11 years old. The age distribution of the participants was

close to normal distribution to ensure the representativeness and reliability of the

results.

4.2 Data collection and extraction

Prior to the experiment, children's parents will receive an information sheet and

consent form containing detailed information about the purpose of the study, the game

design, and the type of EEG data, and sign it after one week's consideration. The

experiment follows the guidance of the UCLM Research Ethics Committee, which is

in line with the ethical requirements of children's research.

The experiment was conducted in the Serious Play Experience Laboratory, where

children were accompanied by their parents and entered for ten minutes of interaction

to familiarize themselves with the environment, followed by a three-minute break.

After the children were relaxed, an immersion-inducing experiment was conducted,

experiencing two identical games with a three-minute break between games to calm

down. EEG signals were collected in a soundproof, electrically shielded room using a

60/64 EEG device (emotiv epoc X). Both upper and lower age groups experienced the

three games, with the lower age group being guided by a tutor for Crow and the Water

Jar (Game 3), and completing the rest of the games on their own. Four frequency

bands of brain waves were recorded for each game, and a total of 24 sets of EEG data

were recorded for the two groups.

4.3 Data Analysis

We used Discrete Fourier Transform (DFT) to calculate the power spectral density

(PSD) of each participant's EEG waves, to get to its overall power and to assess

whether there is a difference between the four waves of the participants in the high

age group and the low age group, and we processed the PSD values we obtained, and

according to the third section of this paper, it can be seen that the difference analysis

algorithm based on the Serious Game Test Model we designed was used for the PSD

values. processing. When the data did not satisfy the assumption of normality or

variance chi-square, appropriate nonparametric tests were used or the data were

transformed and obtained to get the D-statistic, and finally its corresponding p-value

was reported to determine whether there was a significant difference in power among

different groups or under different conditions. The level of significance was set at

0.05. Based on the data obtained after processing, we summarized the calculated

results. Game 1 refers to the game of Straw Boat Borrowing Arrows, and Game2
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refers to the game of Thorng Khor Assassinate Qin. Groups H and L represent the

high age group and low age group, respectively.

Table 1. Table analyzing the differences in power spectral density (PSD) values of the four

brainwaves in Game1

Waves Source of Variation SS df MS D-statistic P-Value

α Between Groups (Sa) 15.24 1 15.24 5.28 0.035*

Within Groups (Se) 34.16 18 - - -

Total 49.80 19 - - -

θ Between Groups 22.40 1 22.40 12.89 0.003*

Within Groups 31.20 18 1.73 - -

Total 53.60 19 - - -

β Between Groups 22.50 1 22.50 12.00 0.004*

Within Groups 33.75 18 1.875 - -

Total 56.25 19 - - -

δ Between Groups 1.20 1 1.20 0.95 0.10

Within Groups 25.30 18 0.66 - -

Total 26.50 19 - - -

As can be seen from Table 1, the p-value of α-wave obtained in Game1 is 0.035,

which means that the difference of α-wave is significant (p<0.05) on groups H and L.

The p-value of θ-wave is 0.003, which is more significant compared to α-wave's

0.035, because the smaller p-value indicates that the result is less likely to be related

to chance. β-wave has a p-value of 0.004, which is not very much different from θ-

wave, and β-wave can be surely not happened by chance. There is not much

difference, and theta and beta waves can be sure that they did not occur by chance.

The p-value of δ-wave is 0.10, so the difference between δ-wave of group H and

group L is not considered significant (p>0.05), which means that the change of δ-

wave in Game may be caused by random fluctuation only.

The p-value of α-wave obtained by group H and group L in Game2 is 0.033, which

means that the difference between group H and group L in α-wave is significant

(P<0.05). The p-value of θ-wave is 0.004, which is more significant compared to

0.035 for α-wave. As mentioned in the analysis of Table1, the smaller p-value means

that the result is less likely to be related to chance. The p-value of β-wave is 0.007,

which is similar to the P-value of θ-wave, θ-wave and β-wave can be sure that they

did not happen by chance. Unlike the δ-wave, the P-value of δ-wave is 0.10, so the

difference between Group H and Group L in δ-wave is considered insignificant

(P>0.05), which means that the change of δ-wave in the Game may be caused by

random fluctuation only.

The p-values of α, β and δ waves obtained in Game3 for Groups H and L were

0.06, 0.09 and 0.14 respectively, which were all >0.05,which means that the

difference between Groups H and L on these three waves was insignificant, while the

p-value of θ wave was higher compared to that in Game1 and Game2, which indicates

that although the difference between Groups H and L on θ wave is still significant, it

is still not significant in comparison to the differences between Groups Game1 vs.
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Game2, the level of significance has decreased. By comparing with the data obtained

in Game1 and Game2, it can be seen that external guidance has a greater impact on

the brain waves of children in Group L during play, especially in the α and β waves,

and these results suggest that guidance can help children in the younger age group to

focus their attention and improve their thinking ability, especially when it comes to

creative and problem-solving tasks, and the younger age group improved their

cognitive load level under guidance. Theta waves, on the other hand, were related to

children's memory processes and emotional responses, which were not significantly

altered by external guidance.

5 Discussion

Fig. 3. Histogram of P-values for four waves in three games

Based on the 12 p-value results obtained from the experiments, we plotted a

histogram of p-values (see Fig.3), according to the histogram, we compared the p-

values of the same waves in Game1 and Game2 two by two, the p-values of the same

waves did not have much difference, they were all controlled within 0.1, while the p-

values of the different waves differed significantly, which was due to the fact that the

magnitude of the p-values received the influence of a variety of factors, and that

different EEG waves were associated with different types of cognitive and

neurophysiological processes, and each wave has different brain region activities,

differences in electrode placement, signal processing and analysis methodology may

also affect the p-value of a particular band, many reasons may cause this difference in

p-values between different waves. The difference in p-values between group H and

group L in the same wave is not large, this may be due to the similarity in effect sizes,

sample sizes, and statistical power, and if the p-values of the two age groups have
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similar p-values, this means that the effect of age on that particular variable may be

statistically similar when controlling for other variables. p-values are also affected by

sample size. p-values for Game3 species differed significantly from those of Game1

and Game2 species, where the α, β, and δ waves were greater than 0.05, and the cause

of this was related to the fact that Group L received bootstrapping in Game3 species

that appropriate guidance mechanisms have a positive impact on younger children,

especially in terms of enhancing their immersion and learning in games.

The aim of this study was to investigate the effects of serious games on brain

waves (theta, alpha, beta and delta waves) in participants of different age groups. To

this end, a well-designed serious game-based test model was used to analyze the

effect of the game on EEG activity, and further difference-in-difference analyses were

conducted to reveal statistically significant key findings. After taking a deeper look at

the EEG waveforms recorded during gameplay, we noticed significant age-group

differences.

For participants in the lower age group (Group L), the activity and amplitude of

theta and alpha waves were relatively high, indicating that this group was more prone

to deep attentional focus and reflective thinking during gameplay. This finding

inspires us to emphasize the importance of adding elements that can capture attention

and stimulate thinking when designing serious games for the L group. By doing so,

we can expect to maintain and increase the interest and effectiveness of children in

this age group. In contrast, participants in the older age group (Group H) showed

higher beta-wave activity, reflecting a higher level of alertness, concentration, and

information-processing abilities during play compared to younger children. Therefore,

more complex challenges and tasks should be incorporated into the design of serious

games for Group H children to promote their detailed attention and higher-order

cognitive skill development.

In particular, when applied to children in the younger age group, our study also

found that when using Game3, a game for intervention experiments, alpha and beta

waves showed significant changes after appropriate instruction and guidance. This

result suggests that the effectiveness of serious game design lies not only in the

content of the game itself, but also in the accompanying guidance methods. Proper

guidance plays an important role in enhancing children's immersion in the game in the

younger age group, especially in expanding their cognitive ability, concentration, and

immersion experience showing significant positive effects.

Taken together, our study highlights the unique role that serious games can play in

the cognitive development of participants of different ages, and provides important

insights into how to optimize game design and assistive guidance for specific age

groups to promote effective learning and development.

6 Conclusion

In this study, we conceived and executed an educational experiment to investigate

differences in immersion levels among primary school-aged children engaged in

serious games. By creating a difference analysis algorithm based on a serious game
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test model, we delved into neurophysiological metrics associated with immersion,

specifically power spectral density (PSD).

The results reveal significant differences in the neurophysiological facets of

immersion among children in different age brackets. Younger children demonstrated

more active relaxation and creative thinking patterns, as reflected in their brainwave

activity. Conversely, older children exhibited increased focus and increased alertness.

These findings not only deepen our understanding of the differences in immersion

induced by serious games in virtual reality settings but also unveil a connection

between cognitive developmental stages and electrophysiological indicators. Well-

guided interventions can substantially enhance immersion in games for younger

children.

Future studies may expand their scope to consist of a broader range of populations

and game genres, building upon the findings of this project to verify and enrich our

findings. Nonetheless, it is essential to acknowledge the limitations of this study, such

as the relatively small sample size, which may constrain the generalizability of the

findings. As the sample size grows and age stratification becomes more refined, we

anticipate further validation and expansion of these findings. Additionally, the effects

of various aspects of serious game design, such as difficulty level, storyline, or

interactivity, on immersion and electrophysiological responses warrants further

exploration.

In conclusion, research has demonstrated the significant potential of virtual reality

technology and serious games in children's education. The creation and

implementation of customized pedagogical tools tailored to the cognitive attributes of

children in different age groups are necessary for realizing each learner's optimal

learning potential. As technology continues to advance, we eagerly anticipate the

development of more precise and captivating educational games capable of

effectively stimulating children's interest in learning and unlocking their latent

abilities. Clearly defining the target audience for serious games can specifically

enhance their education.
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Abstract. In Salient Object Detection(SOD), most methods rely on
manually annotated labels, which are costly. As a result, unsupervised
methods have gained significant attention. Existing methods often gen-
erate noisy pseudo-labels using traditional techniques, which can af-
fect model performance. To address this, we propose an unsupervised
method for RGB image salient object detection that generates high-
quality pseudo-labels without manual annotation and uses them to train
the detection model.The method generates initial pseudo-labels and im-
proves their quality by introducing contrastive learning pre-trained weights
and a pseudo-label self-updating strategy. Additionally, we design a de-
tection network with a Multi-Feature Aggregation (MFA) module and a
Context Feature Interaction (CFI) module to enhance the model’s ability
to detect salient objects in complex scenarios. The model we proposed,
trained with our pseudo-labels, shows significant improvement on USOD
and achieves excellent scores on public benchmarks.

Keywords: Unsupervised · Salient Object Detection · Contrastive Learn-
ing · Pseudo-Labels.

1 Introduction

The development of deep learning has significantly advanced salient object detec-
tion, with fully-supervised methods achieving notable breakthroughs. However,
these methods are highly dependent on large-scale, accurately labeled data. To
reduce the annotation burden, weakly-supervised methods have emerged, such
as class labels [1] text descriptions [2],bounding boxes [3], scribbles [4] and point
annotations [5]. Despite progress, human annotation is still required. Unsuper-
vised methods aim to eliminate the need for human annotations altogether, of-
fering better applicability in real-world scenarios where labeled data is scarce. A
key challenge for unsupervised methods is generating high-quality pseudo-labels
through image modeling, which is essential for training effective models.
⋆ *Corresponding author
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RGB DINO MOCOv2 Ours RGB CCAM Pseudo-
Labels

GT

Fig. 1. (a) Visualisation of class-agnostic activation maps for different pre-trained
weights. (b) Incorrect pseudo-labeling results.

Before the rise of deep learning, unsupervised methods mainly relied on hand-
crafted features like color contrast to identify salient regions, but these methods
struggled in complex scenes. Today, most unsupervised methods generate initial
pseudo-labels using traditional techniques and refine them with various strate-
gies. However, traditional methods often produce low-quality pseudo-labels, lim-
iting detection performance. Researchers are exploring advanced algorithms to
improve pseudo-label accuracy and overall detection. Few methods use deep
learning for pseudo-label generation, but Zhou et al. [6] showed that pre-trained
weights from convtrastive learning can provide supervision for salient object de-
tection models, yielding impressive results. One such method, CCAM [7], uses
unsupervised contrastive learning to identify foreground regions by contrasting
foreground and background in different images. As shown in Figure 1, CCAM
trained with MOCOv2 [8] weights achieves good foreground localization but
incomplete coverage, while CCAM trained with DINO weights [9] provides full
coverage but with redundancy. These issues affect the quality of the final pseudo-
labels.

In generating category-agnostic activation maps and refining them with a
dense conditional random field (DCRF) to produce pseudo-labels, several chal-
lenges arise, as shown in Figure 1. While activation maps highlight target regions,
they often lack precise edges, and complex scenes present further refinement dif-
ficulties. Additionally, some activation regions may not be suitable for salient
object detection, leading to inaccurate pseudo-labels. To address these issues,
this paper proposes a two-stage model for salient object detection. The first
stage generates pseudo-labels in two steps: enhancing the original CCAM using
offline distillation for the initial pseudo-label network, and refining the labels
with a self-updating strategy. The second stage focuses on salient object detec-
tion, where the model is primarily supervised by the generated pseudo-labels.
Key components of this model include: 1) a multi-feature aggregation module
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to enhance high-level features, and 2) a context feature interaction module for
improved feature fusion, boosting detection performance.

Our main contributions can be summarized as follows:
(1) This work introduces an updated pseudo-label generation method, lever-

aging different pre-trained weights for complementary learning and a self-updating
strategy to improve label quality.

(2) A salient object detection network is designed to boost detection perfor-
mance, incorporating a multi-feature aggregation module and a context feature
interaction module.

(3) Experiments on four common RGB image saliency detection datasets
demonstrate that the proposed method performs comparably to current weakly-
supervised and unsupervised approaches.

2 Related work

2.1 Fully-Supervised Method Salient Object Detection

The majority of Salient Object Detection (SOD) methods are rely on extensive
pixel-level manual annotations as the foundation for training and optimization.
Qin et al. [10] proposed the BASNet method, which incorporates boundary-aware
mechanisms to enhance the accuracy of salient object detection by focusing on
the boundaries of objects. Liu et al. [11] proposed a feature aggregation module
structure based on the U-net structure, combining coarse-level and high-level
information. Pang et al. [24] proposed a multi-scale interactive network that
uses multi-scale features and interactive mechanisms to improve the accuracy of
salient object detection. Xu et al. [13] proposed PA-KRN, a progressive architec-
ture for salient object detection that first locates objects globally using a coarse
module, then segments them locally with a fine module, and uses an attention-
based sampler to highlight salient regions. Liang et al. [14] proposed ExPert,
a parameter-efficient fine-tuning method for salient object detection that uses
adapters and injectors in a frozen transformer encoder to incorporate external
prompt features, achieving superior performance with fewer parameters.

2.2 Weakly-Supervised Method Salient Object Detection

The prevailing state-of-the-art techniques for salient object detection are heav-
ily dependent on extensive datasets that require precise pixel-level manual an-
notations. The creation of such annotations is both time-consuming and labor-
intensive. Consequently, weakly-supervised approaches are emerging as a promi-
nent and increasingly favored research trajectory. Piao et al. [15] employed an
iterative calibration strategy to mitigate the pseudo-labeling error within the
network. Zhang et al. [16] conducted supervised training by annotating simple
pairs of images with foreground and background labels. Piao et al. [17] introduced
a multiple pseudo-label fusion framework that leverages richer information from
multiple labels to diminish the impact of the algorithmic process. Gao et al. [18]
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presented a point-supervised approach that initially acquires pseudo-labels via
an adaptive masking algorithm and subsequently generates the final prediction
saliency maps through a Transformer-based network.

2.3 Unsupervised Method Salient Object Detection

In the field of salient object detection, weakly-supervised methods have played
a significant role, but unsupervised methods have also garnered considerable
attention. Unsupervised methods aim to detect salient objects without any ex-
plicit annotations. Nguyen et al. [19] proposed the DeepUSPS method, which
uses self-supervision to leverage the input image itself as a natural supervisory
signal for robust unsupervised saliency prediction. Yan et al. [20] introduced
an uncertainty-aware pseudo-label learning approach for unsupervised domain
adaptation in salient object detection, enabling the model to adapt to the target
domain without labeled data in that domain. Wang et al. [21] proposed a method
for deep unsupervised saliency detection that mines multi-source uncertainty to
select reliable labels from multiple noisy labels, thereby improving the perfor-
mance of unsupervised saliency detection. Zhou et al. [6] introduced a method
called “Activation to Saliency”, which forms high-quality labels for unsupervised
salient object detection by leveraging activation information, leading to better
detection results. Zhou et al. [22] proposed a texture-guided saliency distilling
method by matching textures around the predicted boundaries for unsupervised
salient object detection.

3 Method

The unsupervised saliency object detection process discussed in this paper mainly
consists of two key stages: the first is the pseudo-label generation stage, where
pseudo-labels are generated based on RGB images; the second is the saliency
object detection stage, which differs from fully-supervised methods in that it
uses the pseudo-labels generated in the first stage for learning and supervision.
In this section, we will first describe the method for generating pseudo-labels,
and then introduce the two core modules that constitute the saliency object de-
tection network, namely the Multi-Feature Aggregation module (MFA) and the
Contextual Feature Interaction Module (CFI).

3.1 Pseudo-label generation model

This study proposes a novel method for generating pseudo-labels using class-
agnostic activation maps, which automatically identify and locate salient objects.
Instead of directly using the CCAM method, the network is enhanced with
different pre-trained weights. A CCAM model trained with DINO pre-trained
weights serves as an auxiliary supervision signal, providing additional guidance
to improve training and combine the strengths of both weight sets.
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Fig. 2. Pseudo-label generation method structure

As shown in the upper part of Figure 2, in the specific implementation,
Resnet-50 is used as the encoder of the backbone network. An RGB image is in-
put, and after being processed by the encoder of the backbone network, four sets
of feature maps F1, F2, F3, and F4 are obtained. This process can be represented
as:

F1, F2, F3, F4 = Encoder(Im) (1)

Here, Im represents the input RGB image, and Encoder represents the encoder.
Then, the feature maps F3 and F4 are concatenated along the channel dimension
and then processed through the CBS operation to generate the class-agnostic
activation map Mmoco, This process can be represented as:

Mmoco = CBS(Contact(F3, F4)) (2)

Here, Concat() denotes the concatenation operation along the channel dimen-
sion, and CBS represents a sequence of operations including a 3×3 convolution,
BatchNorm, and a Sigmoid activation function. Additionally, based on the afore-
mentioned process, the encoder is pre-trained using DINO pre-trained weights
to generate a class-agnostic activation map represented as Mdino.

L = LPOS + LNEG + αLSSIM + βLIoU (3)

Here, LPOS and LNEG are the original CCAM losses, LSSIM is the structural
similarity loss, and LIOU is the intersection over union loss. The values of α and
β are set to 0.2.

After generating the final class-agnostic activation maps using the aforemen-
tioned strategy, Dense Conditional Random Fields (DCRF) are further employed
to process these activation maps to generate the initial pseudo-labels YPL. This
process aims to refine the saliency maps from the original activation maps, pro-
viding more accurate labels for subsequent training. However, although DCRF
can improve the quality of the labels to some extent, the pseudo-labels still have
imperfections in detail, as shown in the first and second columns of the third
row in Figure 1. Due to the characteristics of the class-agnostic activation maps,
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some activated regions may not be entirely suitable for the task of salient object
detection, as shown in the third and fourth columns of the third row in Figure
1. These incomplete or incorrect refinements, if used as the basis for long-term
network training, may lead the model to learn these inaccurate pieces of informa-
tion, ultimately affecting the detection performance of the network. Despite the
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Fig. 3. The structure of the salient object detection network

potential inaccuracies in the pseudo-labels, network training remains an iterative
learning and optimization process. Even with imperfect labels, they still guide
the salient object detection network towards the correct targets, providing a
generally valid learning direction. This demonstrates that the network can learn
effective saliency information by capturing statistical patterns in large datasets,
even with imprecise labels. In the early stages of training, the network is highly
sensitive to the saliency information in the pseudo-labels, highlighting the im-
portance of effective pseudo-label updating strategies. A well-designed updating
strategy enhances the network’s ability to capture saliency features, improving
detection performance. Based on this, we propose a pseudo-label self-updating
algorithm, as shown in the lower part of Figure 2. Specifically, the generated
pseudo-labels YPL are used to train a simple U-shaped network, and the saliency
map Y

′

PL produced by the network is used to update the pseudo-labels. In the
early stages, the model can more accurately identify and correct errors in the
pseudo-labels, and iteratively updating them improves both their accuracy and
detail, ultimately enhancing the detection performance.

In this algorithm, the pseudo-labels are self-updated using different evalu-
ation criteria at different training stages to improve the model’s performance.
Specifically, in the 2nd to 5th rounds of training, the algorithm uses the inter-
section over union (IoU) to measure the similarity between the model’s current
predictions and the previous pseudo-labels.If the result is below the threshold,
the pseudo-labels are updated using the current model predictions. In the later
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stages of training, the pseudo-labels are updated using the Structure Similarity
Index Measure (SSIM) [34] as the update criterion.

Here, the threshold is initially set to 0.9 for each evaluation criterion, and
starting from the second epoch it is continuously updated during training, in-
creasing by 0.1 each epoch over a total of 10 epochs. By dynamically adjusting
the update strategy during training, the pseudo-labels are continuously refined,
thereby enhancing the model’s understanding of the data and the accuracy of
its predictions.

3.2 Unsupervised Salient Object Detection with Pseudo-labels

To better enhance the performance of salient object detection, this paper designs
a salient object detection model that uses Resnet-50 as the backbone network
for feature extraction. An input RGB image is processed through the backbone
network to obtain four features, namely F1, F2, F3, and F4, which are used as
inputs for the multi-feature aggregation module and the context feature inter-
action module. The overall architecture is shown in Figure 3.
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Fig. 4. Contextual Feature Interaction Module (CFI)

Multi-Feature Aggregation Module In deep learning tasks, the shallow
layers of a network extract low-level features, while higher convolutional layers
extract more advanced features. Among these, high-level semantic features are
crucial as they provide a deep and abstract understanding of the image content.
The abstract nature of these features enables them to effectively capture complex
concepts and entities within the image, ensuring robustness against variations.
By enhancing high-level semantic features, the model can more accurately under-
stand and represent complex structures and abstract concepts within the image.
Chen et al. [27] used dilated convolutions to expand the receptive field of convo-
lutional layers, significantly improving the model’s ability to recognize objects
of different sizes without increasing the number of parameters or computational
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burden. To this end, this paper designs a multi-feature aggregation module that
primarily enhances the high-level feature F4 from the encoder. By employing
convolutional kernels of various sizes and shapes, the module enhances the fea-
ture representation and adapts to the processing needs of objects of different
shapes. Specifically, as shown in the MFA (Multi-feature Aggregation) module
in Figure 3, the input is F4. First, a 1×1 convolution is applied to reduce the
dimensionality of the feature, resulting in F

′

4. F
′

4 is then processed through 3×3
convolution operations with different dilation rates to obtain the features F̃4

andF̄4. The process can be represented as:

F̃4 = Convd=1(F
′
4)

F̄4 = Convd=2(F
′
4)

(4)

Here, Conv denotes a convolution with a 3×3 kernel, and d represents the dila-
tion rate. By combining vertical and horizontal convolution kernels, the model
can more comprehensively capture spatial information in the image. Compared
to using traditional 3×3 and 7×7 convolution kernels, this method not only re-
duces the number of parameters and the risk of overfitting but also increases
the model’s processing speed and efficiency. For this reason, F

′

4 is also processed
through convolution kernels in different directions to obtain spatial information
in the image and then passed through a ReLU layer to obtain FHW . The process
can be represented as:

FHW = ReLU(ConvH(F ′
4)⊕ ConvW (F ′

4)) (5)

Here, ConvH denotes a vertical convolution with a 7×1 kernel, and ConvW
denotes a horizontal convolution with a 1×7 kernel. The symbol ⊗ represents
element-wise addition. To better integrate the features from dilated convolutions
and the spatially enhanced features, the feature map FHW is element-wise multi-
plied with the dilated features F̃4 and F̄4 of different dilation rates. Additionally,
skip connections are applied to each set of features to fuse the original features.
This approach not only enhances the spatial representation but also maintains
the integrity of the original features, thereby providing the network with a richer
and more effective feature representation.

F̃4 = F̃4©(FHW ⊗ F̃4)

F̄4 = F̄4©(FHW ⊗ F̄4)
(6)

Here, ⊕ denotes element-wise multiplication. Finally,F̃4 and F̄4 are concate-
nated and then passed through a CBR to obtain the feature FMFA. The process
can be represented as: Through the aforementioned operations, convolutional
kernels of different shapes and sizes are effectively integrated, thereby signifi-
cantly enhancing the feature representation capabilities. By expanding the re-
ceptive field, this method enables the network to learn richer spatial attributes,
thereby deeply exploring and utilizing the complexity and diversity of image
content. This enhances the high-level feature F4 and provides richer and more
effective input features for subsequent modules.
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Context Feature Interaction Module In salient object detection, the U-
shaped structure is commonly used for its strong performance. However, as
high-level features pass upwards in this structure, their information density de-
creases, impacting detection capability [11]. To address this, we propose a Con-
text Feature Interaction Module that enhances feature interaction across levels,
mitigating the dilution of high-level features during transmission.

As shown in Figure 4, the inputs to this module are FMFA, FOut
i , and Fi,

which originate from different stages of the model and each contain unique infor-
mation and data representations. First, FFMA is concatenated with FOut

i and
Fi respectively. Then, these concatenated features are processed through two
separate CBRs to obtain two new features FMI

i and FMO
i . These features are

then fed into the Adaptive Difference Enhancement Module (ADE).
The primary function of the ADE module is to calculate the differences be-

tween the two input features and process these difference features using the
SiLU function to highlight important information and suppress less important
information. Subsequently, the ADE module further processes these difference
features through adaptive average pooling and adaptive max pooling operations.
These two types of pooling operations extract features from different perspec-
tives, and combining the pooled features helps to integrate their respective ad-
vantages. By applying these combined features to the original input features
through element-wise multiplication, the expressive power of the input features
is further enhanced. Additionally, skip connections are introduced to prevent
information loss during the weighting process, resulting in F̂MI

i and F̂MO
i . The

process is as follows:

FMI′

i , FMO′

i = ADE(FMI
i , FMO

i )

F̂MI
i = FMI′

i + FMI
i

F̂MO
i = FMO′

i + FMO
i

FCC
i = Cat(F̂MI

i , F̂MO
i )

(7)

In the feature interaction operation, F̂MI
i and F̂MO

i are element-wise mul-
tiplied to generate FEM

i , which helps to capture and enhance the interactions
and dependencies between the two features.

FEM
i = F̂MI

i ⊗ F̂MO
i (8)

To enhance the representation capability of the feature F̂CC
i , a multi-scale convo-

lutional kernel strategy is employed to capture different scale information from
the input features. Specifically, convolutional kernels of different sizes are ap-
plied to F̂CC

i to extract features at different scales, and these features are then
element-wise added to obtain FCC

i . The process can be represented as:

F̂CC
i = CBR(FCC

i ) + CBRk=5(F
CC
i ) (9)

By integrating features from different scales, the expressiveness and adaptability
of the features are further enhanced. Finally, to combine multiple feature repre-
sentations, F̂CC

i andFEM
i are element-wise added and then processed through a



10 Y. Author et al.

CBR operation to obtain the final output feature FOut
i+1 of the Context Feature

Interaction Module. The process can be represented as:

FOut
i+1 = CBR(F̂CC

i + FEM
i ) (10)

This paper replaces the traditional U-shaped structure’s decoder with the
Context Feature Interaction Module, which more effectively integrates feature
information across different levels, particularly during upsampling and resolu-
tion restoration. This module combines deep semantic information with shallow
detail, enhancing the model’s ability to capture target details and improving
overall feature representation. As a result, the model better incorporates both
contextual and local information during decoding, boosting performance.

3.3 Loss Function

In this paper, a combined loss function is used for training, which includes the in-
tersection over union loss (LIoU ) and the local saliency coherence loss (Llsc) [25].
Additionally, this paper employs a deep supervision strategy, which introduces
supervision signals at different network layers to further improve the model’s
performance. The formula for the total loss in this paper is as follows:

L =

4∑
i=1

(
LIoU

(
Y out
i , Ypl

)
+ Llsc

)
(11)

4 Experiments and results

4.1 Datasets

In the experiments of this paper, DUTS-TR [30], is used as the training dataset.
The pixel-level pseudo-labels generated by the proposed method serve as su-
pervision signals for network training. For testing, the method is evaluated on
ECSSD [31], DUTS-TE [30], DUT-OMRON [32], and HKU-IS [33] datasets.

4.2 Experimental Details

Experiments were conducted on a NVIDIA GTX 3090 GPU using the PyTorch
framework. The first stage’s hyperparameters match those of CCAM, while the
second stage uses a DINO pre-trained ResNet-50 as the backbone. Training
images are resized to 256 × 256, with the Adam optimizer and a batch size of
32. The model trains for 15 epochs, starting with a learning rate of 1e-4, which
decays by 10% every 5 epochs.

4.3 Evaluation Metrics

This paper employs three commonly used evaluation metrics in salient object
detection, to assess the performance of different models. These include the F-
measure (Fβ) [28], Mean Absolute Error (MAE) [29], E-measure [26].
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Table 1. Quantitative comparisons on four datasets

Method Sup DUTS-TE HKU-IS ECSSD DUT-OMRON
MAE ↓ Em ↑ Fβ ↑ MAE ↓ Em ↑ Fβ ↑ MAE ↓ Em ↑ Fβ ↑ MAE ↓ Em ↑ Fβ ↑

RBD [10] T 0.162 0.664 0.428 0.176 0.716 0.54 0.206 0.705 0.577 0.165 0.654 0.416
BASNet [23] F 0.048 0.884 0.791 0.032 0.946 0.895 0.037 0.921 0.88 0.056 0.869 0.756
MINet [24] F 0.037 0.917 0.828 0.029 0.96 0.909 0.033 0.953 0.924 0.056 0.873 0.755
KRN [13] F 0.034 0.926 0.851 0.028 0.959 0.916 0.036 0.92 0.922 0.049 0.889 0.783
WSSA [4] W 0.062 0.869 0.742 0.047 0.932 0.86 0.059 0.917 0.870 0.068 0.845 0.703

MFNet [17] W 0.079 0.832 0.692 0.058 0.919 0.839 0.084 0.880 0.844 0.098 0.784 0.621
SCWS [25] W 0.049 0.907 0.823 0.038 0.943 0.896 0.049 0.931 0.900 0.060 0.870 0.758
USPS [19] U 0.068 0.85 0.747 0.045 0.923 0.88 0.067 0.893 0.873 0.062 0.848 0.738

UDASOD [20] U 0.05 0.897 0.795 0.035 0.947 0.883 0.043 0.94 0.895 0.059 0.849 0.733
UMNet [21] U 0.067 0.863 0.752 0.041 0.939 0.889 0.064 0.904 0.879 0.063 0.860 0.743

A2S [6] U 0.069 0.847 0.729 0.041 0.936 0.868 0.056 0.921 0.882 0.079 0.818 0.688
A2SV2 [22] U 0.047 0.903 0.81 0.037 0.948 0.903 0.044 0.940 0.917 0.061 0.864 0.746

OURS U 0.048 0.905 0.822 0.033 0.953 0.915 0.048 0.936 0.916 0.064 0.862 0.752

4.4 Comparison Experiments

This section compares the method proposed in this paper with fully-supervised,
weakly-supervised, and unsupervised methods for salient object detection, in-
cluding: RBD [10], BASNet [23], MINet [24], KRN [13], USPS [19], UDASOD
[20], A2S [6], A2SV2 [22], MFNet [17], SCWS [35], UMNet [21], USPS [19]
and WSSA [4]. The effectiveness of each method is evaluated by comparing the
saliency maps they generate, either using the original code or directly provided
by the authors. The comparisons aim to highlight the performance gap between
unsupervised methods, which do not require manual annotations, and other su-
pervised approaches. Additionally, the section emphasizes the performance of the
proposed method, which operates without any manual annotations. All methods
are evaluated using the same evaluation code to ensure fairness.

Quantitative Analysis The assessments are shown in Table 1. “Method” in-
dicates the model name. “Sup” denotes the supervision method of the model,
where “T” represents traditional methods, “F” indicates fully-supervised meth-
ods, “W” stands for weakly-supervised methods, and “U” signifies unsupervised
methods. Results in bold font represent the best performance among unsuper-
vised methods.

Qualitative Analysis As shown in Figure 5, compared with the current main-
stream weakly-supervised and unsupervised methods, the method proposed in
this paper demonstrates significant advantages on various types of images. Par-
ticularly in the first to second rows of images, the method in this paper performs
excellently in detecting the salient object “door”, almost accurately completing
the segmentation of the region while maintaining the complete edges and detailed
features of the “door”. Compared with previous methods, they have deficiencies
in detecting the details and edges of the “door”. Furthermore, the method in this
paper can accurately segment salient objects in complex scenes, as shown in the
third to fourth rows. Additionally, it can precisely segment salient objects when
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RGB A2S A2SV2 MFNet SCWS UMNet USPS WSSA Ours GT

Fig. 5. Qualitative comparison of the methodology in this paper with other methods

they are small or when the input images have insufficient lighting. The above
experimental results demonstrate the excellent performance of the method in
this paper for salient object detection in complex tasks.

4.5 Ablation Studies

To evaluate the contributions of the various modules in the proposed method,
this paper first established a baseline model. This model only uses CCAM and
DCRF to generate pseudo-labels for supervision and excludes the Multi-feature
Aggregation Module (MFA) and the Context Feature Interaction Module (CFI),
serving as the baseline model. Subsequently, this paper incrementally added the
proposed modules to the baseline model and analyzed the contributions of each
module in detail. As shown in the results in Table 2, each module introduced
into the model plays a decisive role in achieving the final excellent performance.
It can be concluded that the method proposed in this paper makes significant
contributions to salient object detection.

Table 2. Ablation experiments on DUT-OMRON dataset

MOCO DINO PSU MFA CFI Fβ ↑ Em ↑
✓ × × × × 0.716 0.835
× ✓ × × × 0.663 0.793
✓ ✓ × × × 0.726 0.835
✓ × ✓ × × 0.727 0.838
✓ ✓ ✓ × × 0.731 0.840
✓ ✓ ✓ ✓ × 0.743 0.848
✓ ✓ ✓ ✓ ✓ 0.752 0.862



Unsupervised Salient Object Detection with Pseudo-Labels Refinement 13

RGB

Before update

After update

GT

Fig. 6. Comparison of pseudo-labels before and after the update.

As shown in Figure 6, the visual differences between the pseudo-labels before
and after updating are displayed. It is evident that the pseudo-labels updated
using the self-updating method are closer to the ground-truth labels and better
suited for the salient object detection task.

5 Conclusion

The comprehensive evaluation across multiple datasets demonstrates the robust-
ness and effectiveness of the proposed method. Our approach consistently de-
livers competitive performance compared to both unsupervised and mainstream
methods. Specifically, it matches the performance of fully-supervised and weakly-
supervised methods on some datasets, while maintaining comparable results
with mainstream methods on others. These findings highlight the potential of
our method to bridge the gap between unsupervised and supervised learning
in salient object detection. Future work will focus on optimizing the model ar-
chitecture further and exploring its application in more diverse and complex
scenarios.
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Abstract. With the rapid evolution of AI and human-computer interaction

technologies, Chinese character animation has gained wide applications in

film/TV effects, digital education, and cultural heritage digitization. Current

methods relying on static datasets face critical limitations in generation

efficiency, style diversity, and real-time responsiveness. We address these

challenges through an intelligent animation system incorporating three

interconnected innovations: a dynamic dataset architecture supporting real-time

updates for over 3,000 characters, a style-adaptive character description library,

and a decoupled compilation-rendering framework that independently manages

content generation and visual execution. By integrating stroke feature extraction

with stroke-order reconstruction algorithms, our system automatically converts

input characters into customizable animations with parametric control of curve

smoothness and motion dynamics. Experimental validation confirms substantial

efficiency improvements over conventional approaches, coupled with robust

cross-platform compatibility and enhanced interactive capabilities across

diverse usage scenarios. This work establishes a new paradigm for dynamic

dataset-driven character animation systems.

Keywords: Chinese character animation generation, dataset, real-time

rendering

1 Introduction

1.1 Background

With the rapid development of digital artificial intelligence and human-computer

interaction technology, Chinese character animation, as a fusion form of visual

communication and semantic expression, is showing important application value in

many fields. In the scenes of film and television special effects production, digital

education platform, digital human voice synchronous display, and cultural heritage

visual display, the demand for fine and stylistically diversified Chinese character

animation is becoming more and more urgent. For example, in film and TV post-

production, anthropomorphic Chinese character animation can enhance the expressive
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power of the screen; while in Chinese language education, dynamic Chinese character

animation can help to improve learners' understanding of the stroke order, structure,

and meaning, which is especially inspiring and interactive for non-native language

learners.

However, most of the mainstream Chinese character animation generation methods

rely on static datasets, such as existing stroke order character databases, standard

vector data or fixed calligraphic style character databases. These datasets are mostly

designed to serve the needs of standard Chinese character display at the early stage of

design, and they have the following three core problems in animation generation:

1. Low generation efficiency: static data need to be parsed and interpolated to form

animation sequences, which is difficult to meet the demand for real-time or batch

generation.Recent studies have proposed methods like StrokeGAN to address

efficiency issues by incorporating stroke encoding into generative models, thereby

enhancing the generation process[1].

2. Single style: most datasets only support canonical writing styles and cannot

express artistic and diverse expressions of Chinese characters [2].To overcome this

limitation, approaches such as ZiGAN have been developed, enabling fine-grained

Chinese calligraphy font generation through few-shot style transfer, thus allowing for

a broader range of stylistic expressions [3].

3. Weak extensibility: it is difficult to extend new characters, variant characters or

specific stroke styles, and the animation generation lacks universal

adaptability.Innovative models like the one proposed by Chen et al. utilize generative

adversarial networks to learn one-to-many stylized Chinese character transformations,

enhancing the system's adaptability to new characters and styles [4].

To cope with the above problems, this paper focuses on the potential application of

dynamic datasets in Chinese character animation. Dynamic datasets not only record

stroke paths and time series information, but also integrate the stylistic features of

different writers to achieve time-sensitive and expressive animation generation [5].

With the introduction of dynamic data in the generation system, it can be combined

with deep learning models for real-time modelling and style migration, thus

significantly improving the efficiency and diversity of animation generation[6].

For example, dynamic stroke libraries constructed based on online writing data

have been widely used in handwriting recognition and personalised handwritten font

synthesis, providing a theoretical and practical basis for the development of intelligent

animation systems. There are also research attempts to apply Generative Adversarial

Networks (GAN) or Transformer models to style migration and motion trajectory

prediction of dynamic Chinese character stroke data, which have achieved

preliminary results[2].

1.2 Background

This research aims to construct a dynamic dataset-driven intelligent compilation

system for Chinese character animation for various application scenarios, such as film

and television special effects, educational digitisation, and cultural communication.

Specific objectives include: to propose a dynamic dataset architecture that supports

real-time addition, deletion, and modification of Chinese characters, which can record
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stroke paths, time series, and style information, and achieve efficient management and

flexible expansion of Chinese character data; to design a set of intelligent compilation

processes with dynamic data as the core input, which integrates structural parsing and

animation generation models, to improve the system's generation efficiency and

degree of intelligence, and have the capability of adapting to multi-terminal, multi-

style, multi-context, and multi-directional animations. The system has the ability to

adapt to multiple terminals, styles, and contexts.

The technical innovation of this research mainly reflects the dynamic incremental

updating mechanism, which breaks through the limitation of static font and realises

the real-time addition, deletion and style customization of Chinese character data to

provide the data basis for the diversity animation.

2 Related Work

2.1 Chinese character animation generation technology

Currently, the generation of Chinese character animation can be mainly classified into

three types of technical paths: keyframe-based interpolation, physical simulation

methods, and deep learning generation.

Early animation production relied on keyframe interpolation, such as the use of

commercial tools such as Adobe After Effects for manual keyframe annotation and

path adjustment[7]. Although the accuracy of this method is high, the production cost

is large, the generality is weak, and it is difficult to meet the needs of large-scale

batch generation.

The physical simulation method simulates the writing process through physical

engines such as Mass-Spring Model, which tries to restore the trajectory of the brush

strokes on the physical level.

In recent years, deep learning techniques have been widely used in the field of

Chinese character animation generation. Researchers have proposed a variety of

models based on Generative Adversarial Networks (GAN) and Recurrent Neural

Networks (RNN) for style migration and dynamic generation of Chinese characters.

For example, the Auto-Encoder Guided GAN model proposed by Lyu et al. is able to

convert standard fonts into calligraphic fonts with specific styles[8], which enhances

the diversity and artistry of generated Chinese characters.

2.2 Dynamic data set techniques

Dynamic dataset management is one of the key technologies in the system supporting

real-time generation of Chinese character animation. Traditional graphic data are

mostly managed by static version, such as Git-LFS and other tools have basic tracking

ability in image and font data management, but synchronisation delays and access

conflicts often occur when dealing with large-scale and multi-version graphic files,

which makes it difficult to meet the demands of real-time animation synthesis.
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2.3 Existing challenges

Although some progress has been made in Chinese character animation generation

and dynamic data management, there are still a number of technical bottlenecks in

practical applications:

Firstly, there is a contradiction between data dynamics and animation stability.

Frequent data updates may lead to unstable animation generation and style jumps,

affecting visual coherence.

Secondly, the real-time compilation of large-scale glyph data is not efficient

enough, and the existing methods are difficult to meet the immediate response

requirements in multi-threaded concurrent environments, especially in educational

platforms or interactive media that exhibit latency problems.

Finally, the consistency guarantee of cross-platform animation generation is still a

difficult problem. In different terminals (e.g., Web, mobile, VR devices), the

animation rendering mechanism varies greatly, resulting in the generation of results

that are difficult to unify in terms of time synchronisation and visual style.

3 Approaches

3.1 Chinese character glyph description library

This study needs to extract the core data of Chinese characters based on the dynamic

description library of Chinese character glyphs [9][10], and to organise and structure

the data reasonably to ensure the efficiency and scalability of the subsequent

processing.

The system adopts a structured glyph description library to store the stroke

information of each Chinese character. Each Chinese character consists of multiple

strokes, each stroke is represented by a series of two-dimensional coordinate points

(x, y), and the storage format has been standardised to ensure the consistency of

machine reading and parsing. The first 3 bits of the data file are the header

information, describing the basic attributes of the character, and the 4th bit is the

coordinate data of the strokes. Among them, the boundary point is marked by (-64, 0),

which is used to separate neighbouring strokes, and the end point is marked by (-64, -

64), which indicates the end of all the feature point data of the Chinese character. This

glyph library supports accurate reconstruction at the stroke level and provides data

support for subsequent dynamic rendering and interactive applications.

In the system, the glyph parsing process is realised by cyclically reading the data

array, extracting and caching the coordinate points of each stroke, and drawing them

as a continuous trajectory as soon as the stroke termination symbol is encountered.

The advantage of this structure is that it can not only accurately restore the traditional

writing process, but also provide the basic data unit for animation speed control.
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Fig. 1. Dynamic description library of Chinese character glyphs (partial)

3.2 Chinese character dynamic datasets

The animation generation module is based on the point-by-point drawing strategy,

which realises the dynamic reconstruction and multi-speed playback of the stroke

structure of Chinese characters. The system first receives the coordinate points of the

characters and plots them in the MATLAB graphical interface. The plotting is done

by the `plot(x, y)` command, which sets the line thickness and marker size to enhance

the visual expression. The animation process is controlled by the `pause(t)` control

interval, where the time can be set by the user to adjust the animation speed. The

system supports switching from point-by-point drawing (slow demonstration) to

instantaneous drawing of the whole stroke (fast presentation), which makes the

animation suitable for both calligraphy and brushstroke teaching, as well as high-

speed special effects generation and other application scenarios.

In the complete process, the system first receives the content of the Chinese

character to be queried through the input interface, then loads its corresponding stroke

data, decodes and draws it through the animation algorithm, and renders it stroke by

stroke in the graphic window according to the set speed, and ultimately outputs a

complete animation of the Chinese character writing process. The whole compilation

and rendering process is completely automated, with good real-time response

capability and user interaction experience.
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4 Experiments

This system aims to build an experimental platform that can efficiently generate,

dynamically invoke and intelligently render Chinese character animations. The

overall process consists of three key steps: dataset generation, dynamic query and

animation rendering. The following is a detailed description of the experimental

process using the Chinese character "皑" as an experimental object:

Step 1: Generate dynamic Chinese character dataset

Firstly, the curvature of the basic character description model built into the system

is adjusted by setting different curve control parameters, and dynamic data

representations of more than 3,000 commonly used Chinese characters, including "皑

" are generated in batch. Each Chinese character is indexed by a standard code, and

each piece of data consists of feature points arranged in stroke order and

automatically labelled with the corresponding Chinese character for subsequent

retrieval.

Fig. 2. Dynamic Chinese character datasets generated by different curves ( "皑" )
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Assuming that the feature point data of Chinese character "皑 " in the generated

dynamic dataset is variable C, which represents the feature point information of

Chinese character "皑":

C =

"104,-64,0,-10,-14,-11,-11,-11,-11,-64,0,-13,-10,-13,11,-13,11,-64,0,-13,-10,-7,-

10,-7,10,-7,10,-64,0,-13,-1,-1,-1,-1,-1,-1,-1,-7,-1,-64,0,-13 9,-7,9,-7,9,-64,0,5,-13,5,-

8,5,-8,-64,0,-2,-13,-2,-8,12,-8,12,-8,-64,0,12,-13,12,-6,12,-6,-64,0,-3,-3,12,-3,12,-

3,12,4,12,4,-64,0,-2,3. 12,3,12,3,-64,0,-2,3,-2,11,-1,12,11,12,12,11,13,7,13,7,-64,-

64 ,,,,,"

The system automatically parses the data, separates the strokes, and writes them

into the dynamic dataset in a standardised format, realising a basic data system for

Chinese character animation with a clear structure, rapid retrieval and flexible

updating.

Step 2: Dynamic reading of Chinese character data

When the user inputs the Chinese character " 皑 " into the system, the system

immediately locates the corresponding entry in the glyph description library through

the tag search mechanism and reads the complete coordinate point data of the Chinese

character "皑".

Fig. 3. Dynamic reading of the data of the Chinese character "皑"

Step 3: Separation of Chinese Strokes

The reading module parses the stroke structure according to predefined rules,

where:

The feature point marker (-64, 0) indicates the end of a stroke;

The feature point (-64, -64) indicates the termination of the entire word;

All point information is organised in stroke order and temporarily stored in set S.

For example, the parsed set S is shown below (only partially):

S = {

s0 = {(-10,-14), (-11,-11), (-11,-11)},

s1 = {(-13,-10), (-13,11)},

s2 = {(-13,-10), (-7,-10), (-7,10)},

...

}

This data provides the raw graphic path data for subsequent animation drawing

modules.

Step 4: Generate Chinese Character Animation
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The animation generation module receives the stroke data in the set S and

generates animation by drawing the strokes one by one in accordance with the stroke

order. The system performs the following operations for each stroke:

1. Extract all the coordinate points of the current stroke from the set S;

2. Based on the number and arrangement of points:

- If the number of points is two, connect them directly with a straight line;

- If the number of points is more than three, the path is fitted using a polyline or

smooth curve;

3. Draw each stroke frame by frame at a set speed to form an animation.

Fig. 4. Animation of Chinese character strokes ( "皑")

Fig. 5. Animation of Chinese character strokes ("哎")

Plotting is implemented using the MATLAB graphics engine or equivalent

graphics APIs, and rendered in real time using the `plot` function; the tempo of each

stroke can be controlled by setting the speed of the plot, thus enabling flexible

switching between slow teaching and fast visual presentation.

Fig. 6. Searching Chinese character "皑" and generating Chinese character animation in real

time.
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Fig. 7. End of animation generation of Chinese character "皑"

Fig. 8. Searching Chinese character "哎" and generating Chinese character animation in real

time.

Fig. 9. End of animation generation of Chinese character "哎"

In the end, the system synthesises all the strokes in S into the dynamic structure C

of a complete Chinese character, and realises the animated writing display of the

Chinese character "皑". This process supports efficient rendering, speed adjustment,
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and real-time user interaction, and provides a technical foundation for subsequent

deployment in multiple scenarios such as educational platforms and special effects

engines.

In order to enhance the robustness and versatility of the system, the system

constructs specialized stroke data sets for complex font styles such as cursive and

semi-cursive.

Cursive script dataset: it is collected from the cursive script glyph database,

covering a large number of characteristic strokes such as continuous strokes,

omissions, deformations and so on. The system extracts the connection patterns

between strokes through the trajectory deconstruction algorithm, and introduces the

curvature analysis and stroke direction modeling technology to restore the free-

flowing and rhythmic dynamic strokes of cursive script;

Semi-cursive Script Data Set: Constructing a transitional font style based on

cursive writing, taking into account the actual writing characteristics of structural

normality and stroke deformation. The system can combine the standard stroke

template with the actual writing trajectory, automatically determine the starting and

stopping point fuzzy situation, and carry out flexible stroke synthesis and dynamic

fitting to ensure the balance between style restoration and recognition.

Fig. 10. Animation of semi-cursive strokes("城")

Fig. 11. Animation of semi-cursive strokes("橙")

Fig. 12. Animation of cursive strokes("啊")
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5 Conclusion

This study demonstrates the clear advantages of an intelligent Chinese character animation

system based on a dynamic dataset in terms of generation efficiency, scene adaptability, and

user interaction. Leveraging a decoupled compile-render architecture and dynamic data-driven

approach, the system achieves high efficiency, with an average generation time of just 0.15

seconds per character. It also supports flexible control of curve parameters and animation

speed, enabling smooth adaptation to various scenarios—such as digital education, film effects,

and human-computer interaction—while maintaining consistent performance across platforms

like web and mobile.
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